A Cube Master

一个Cuber的ACM历程

TopCoder SRM 697 div1

  题目要求abiimodpi=0,也就是ai的每个素因子个数的bi倍都大于等于pi相应的因子个数。其实我们可以让ai只有一个素因子,比如说2,也就是如果存在解,那么一定存在ai均为2的整数幂的解。
  设

sum=i=0n1ai

  我们得到一组不等式,对于所有的iai×bisumai,整理得aisum(bi+1),此时需要得到一组没有相同元素的解。注意到ai应该大于等于sum1(bi+1)倍,而所有ai的和又等于sum,因此bi应该满足
i=0n1bi1

  当bi各不相等时,上式可以取等号,否则不能取等号。若满足了上式条件,一定能构造出解。

#include <bits/stdc++.h>
using namespace std;

#define ll long long

const double eps = 1e-10;

class DivisibleSetDiv1{
public:
    string isPossible(vector<int> b){
        sort(b.begin(),b.end());

        const int n = b.size();
        double sum = 0;
        for(int i=0;i<n;i++){
            sum += 1.0/(b[i]+1);
        }

        if(sum > 1.0 + eps){
            return "Impossible";
        }else if(sum > 1.0 - eps){
            for(int i=0;i<n-1;i++){
                if(b[i] == b[i+1]){
                    return "Impossible";
                }
            }
        } 
        return "Possible";
    }
};
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/squee_spoon/article/details/52245913
文章标签: TopCoder
个人分类: 数学相关
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭