一、概念
1概念
程序设计 = 数据结构 + 算法
数据结构分为,物理结构 和 逻辑结构
物理结构:顺序结构和链式结构
逻辑结构:集合,列表,树,图。
算法 的基本特性:输入、输出、有穷性、确定性、可行性。
算法的设计要求:正确性,就是指算法运行时有输入,输出等要素,能够正确的满足计算的需求。
可读性:方便阅读、理解和交流。
健壮性:当输入不合法时,能够做出正确的处理,而不是报告异常、崩溃等等。
时间效率高以及存储要求低:算法的设计要满足在尽量缩短计算时间的前提下,用最小的内存。
2.算法效率的度量方法
是骡子是马拉出来溜溜,就是对算法的运行时间的测试。
对于测试可以分为事前预估 和 事后测试,但是算法在设计完成后,在编写测试程序来测试又会浪费大量的时间。此外,测试的环境的差别又相当大,所以这并不是一歌好的方法。最好的是事前预估的方法。
算法效率的预估
l 算法采用的策略、方案
l 编译产生的代码质量
l 问题的输入规模
l 机器执行指令的速度
说好的时间复杂度和空间复杂度呢?
概念:
时间复杂度:在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度也就是算法的时间量度,记作T(n) = O(f(n))。它表示随问题规模的n的增长,算法时间的增长率和f(n)的增长率相同,称作算法的时间渐进复杂度,简称为时间复杂度。其中f(n)是问题规模的某个函数。
关键来说:执行次数 == 时间
记法:O()大O记法
一般情况下,随着输入规模n的不断增大,T(n)增长最慢的为最优算法。
推导
1. 用1来取代运行时间中的所有加法常数,例如输出语句等执行1次的语句,在计算总数的时候要相加。
2. 在修改后的运行函数中,只保留最高项。
3. 如果最高项存在且不是1,则去除与这个项相乘的常数。
4. 得到的最后的结果就是大O阶。
算法的空间复杂度
在写代码的时候完全可以用空间换时间。这句话的意思就是,查询一个数据,每一次查询计算都需要浪费时间,浪费CPU。可以是另一种情况,事先创建一个表,每一次只需要查询对照就可以了,这样浪费了空间但节约了时间。