数据结构的学习1

一、概念

1概念    

        程序设计 = 数据结构 + 算法

        数据结构分为,物理结构 逻辑结构

        物理结构:顺序结构和链式结构

        逻辑结构:集合,列表,树,图。

        算法 的基本特性:输入、输出、有穷性、确定性、可行性。

算法的设计要求:正确性,就是指算法运行时有输入,输出等要素,能够正确的满足计算的需求。   

                                  可读性:方便阅读、理解和交流。

健壮性:当输入不合法时,能够做出正确的处理,而不是报告异常、崩溃等等。

时间效率高以及存储要求低:算法的设计要满足在尽量缩短计算时间的前提下,用最小的内存。

                

      2.算法效率的度量方法

        是骡子是马拉出来溜溜,就是对算法的运行时间的测试。

        对于测试可以分为事前预估 事后测试,但是算法在设计完成后,在编写测试程序来测试又会浪费大量的时间。此外,测试的环境的差别又相当大,所以这并不是一歌好的方法。最好的是事前预估的方法。

       算法效率的预估

l  算法采用的策略、方案

l  编译产生的代码质量

l  问题的输入规模

l  机器执行指令的速度

说好的时间复杂度和空间复杂度呢?
概念:

时间复杂度:在进行算法分析时,语句总的执行次数Tn)是关于问题规模n的函数,进而分析Tn)随n的变化情况并确定Tn)的数量级。算法的时间复杂度也就是算法的时间量度,记作T(n) = Ofn))。它表示随问题规模的n的增长,算法时间的增长率和fn)的增长率相同,称作算法的时间渐进复杂度,简称为时间复杂度。其中fn)是问题规模的某个函数。

关键来说:执行次数 == 时间

记法:O()大O记法

一般情况下,随着输入规模n的不断增大,T(n)增长最慢的为最优算法。

 

推导

1.      用1来取代运行时间中的所有加法常数,例如输出语句等执行1次的语句,在计算总数的时候要相加。

2.      在修改后的运行函数中,只保留最高项。

3.      如果最高项存在且不是1,则去除与这个项相乘的常数。

4.      得到的最后的结果就是大O阶。

算法的空间复杂度

在写代码的时候完全可以用空间换时间。这句话的意思就是,查询一个数据,每一次查询计算都需要浪费时间,浪费CPU可以是另一种情况,事先创建一个表,每一次只需要查询对照就可以了,这样浪费了空间但节约了时间。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值