[数据结构] 表达式求值(转化为后缀表达式再求值或直接求值)

两种情况:

1. 根据输入的算数表达式,如(56-20) /(4+2), 先转化为后缀表达式(逆波兰式)56#20#-4#2#+/  因为输入的数字有多位数的(56),所以数之间用#隔开,然后根据后缀表达式求值。

2.根据输入的算数表达式,直接进行求值。


对于情况1:

转化为后缀表达式时用到了一个符号栈,把后缀表达式存放到数组postExp中,根据后缀表达式求值时用到了一个运算数栈,运算完后,栈顶即为所求。

完整代码如下:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stack>
#include <queue>
using namespace std;

const int maxOp = 7;//符号的总数

struct  Pri      //设定运算符优先级
{
    char ch;     //运算符
    int pri;     //优先级
}lpri[] = {{'=', 0}, {'(', 1}, {'*', 5}, {'/', 5}, {'+', 3}, {'-', 3}, {')', 6}},
 rpri[] = {{'=', 0}, {'(', 6}, {'*', 4}, {'/', 4}, {'+', 2}, {'-', 2}, {')', 1}};

int LeftPri(char op)//求左运算符op的优先级
{
    for(int i = 0; i < maxOp; ++ i)
        if(lpri[i].ch == op)
            return lpri[i].pri;
}

int RightPri(char op)//求右运算符op的优先级
{
    for(int i = 0; i < maxOp; ++ i)
        if(rpri[i].ch == op)
            return rpri[i].pri;
}

bool IsOp(char ch)//判断符号ch是否为运算符
{
    if(ch == '(' || ch == ')' || ch == '+' || ch == '-' || ch == '*' || ch == '/')
        return true;
    return false;
}

int Precede(char op1, char op2) //op1和op2运算符优先级的比较结果
{
    int lPri = LeftPri(op1);
    int rPri = RightPri(op2);
    if(lPri == rPri)
        return 0;
    else if(lPri < rPri)
        return -1;
    else
        return 1;
}

void TransToPostExp(char* exp, char postExp[]) //将算数表达式exp转换成后缀表达式
{
    stack<char>opStack;//运算符栈
    opStack.push('=');// =入栈,其优先级最低
    int i = 0;//后缀表达式字符指针
    while(*exp != '\0')
    {
        if(!IsOp(*exp)) //如果不是运算符
        {
            while(*exp >= '0' && *exp <= '9')//是数字
            {
                postExp[i ++] = *exp;
                exp ++;
            }
            postExp[i ++] = '#'; //用'#'表示一个数值串的结束,比如456#
        }
        else
        {
            int cmpPri = Precede(opStack.top(), *exp);
            if(cmpPri == 0) //左右运算符优先级相等,也就是()这种情况
            {
                opStack.pop();// '('退栈
                exp ++;
            }
            else if(cmpPri == -1) //栈顶运算符优先级低
            {
                opStack.push(*exp);//入栈,符号栈栈顶始终是优先级最高的
                exp ++;
            }
            else  //栈顶运算符优先级高
            {
                while(Precede(opStack.top(), *exp) == 1)//不断退栈
                {
                    postExp[i ++] = opStack.top();
                    opStack.pop();
                }
                //opStack.push(*exp);
                // exp ++;  一定要注意!不能这样写,因为有可能当前字符是')'
            }
        }
    }
    while(opStack.top() != '=')//exp扫描完毕,退栈到' = '为止
    {
        postExp[i ++] = opStack.top();
        opStack.pop();
    }
    postExp[i] = '\0';//postExp表达式添加结束标识
}

void GetTwoFromStack(stack<double>& numStack, double& a, double& b)//从运算数栈中获取两个数,栈顶和次栈顶
{
    a = numStack.top();
    numStack.pop();
    b = numStack.top();
    numStack.pop();
}

float CalFromPostExp(char* postExp)//计算后缀表达式的值
{
    stack<double> numStack;//运算数栈
    double a, b;
    while(*postExp != '\0')
    {
        switch(*postExp)
        {
        case '#':
            break;
        case '+':
            GetTwoFromStack(numStack, a, b);//获取运算数栈的两个数
            numStack.push(b + a);//进行运算,再压入运算数中
            break;
        case '-':
            GetTwoFromStack(numStack, a, b);
            numStack.push(b - a);
            break;
        case '*':
            GetTwoFromStack(numStack, a, b);
            numStack.push(b * a);
            break;
        case '/':
            GetTwoFromStack(numStack, a, b);
            if(a != 0)
                numStack.push(b / a);
            else
            {
                cout << "除0错误! " <<endl;
                exit(0);
            }
            break;
        default: //处理数字字符
            int n = 0;
            while(*postExp >= '0' && *postExp <= '9')
            {
                n = n * 10 + (*postExp - '0');
                postExp ++;
            }
            numStack.push(n);
            break;
        }
        postExp ++; //继续处理字符
    }
    return numStack.top();
}

char exp[50];
char postExp[50];

int main()
{
    while(cin >> exp)
    {
        cout << "中缀表达式为: " << exp <<endl;
        TransToPostExp(exp, postExp);//将算数表达式转化为后缀表达式,比如输入(56-20)/(4+2) ,输出 56#20#-4#2#+/
        cout << "后缀表达式为: " << postExp <<endl;
        cout << "表达式的值为: " <<CalFromPostExp(postExp) << endl << endl;
    }
    return 0;
}

及其容易出现错误的地方为void TransToPostExp(char* exp, char postExp[]) //将算数表达式exp转换成后缀表达式   这个函数中:

else  //栈顶运算符优先级高
            {
                while(Precede(opStack.top(), *exp) == 1)//不断退栈
                {
                    postExp[i ++] = opStack.top();
                    opStack.pop();
                }
                //opStack.push(*exp);
                // exp ++;  一定要注意!不能这样写,因为有可能当前字符是')'
            }

一定要注意如果当前字符时')'时,它的右优先级是最低的,因为除了'('外的其它符号 + - * / 遇到它都得退出符号栈

不要把')'加入到符号栈中,opStack.push(*exp);

也不要直接忽略')'而继续扫描下一个字符,因为此时栈顶可能时'(',需要进行下一轮的比较,把'('出栈, 所以不能写 exp ++.

也就是说 这里需要特别考虑 当前字符是 ')'的情况


对于情况2:

用到了两个栈,符号栈和运算数栈,对输入的运算数表达式边扫描边求值。

完整代码(来来回回改了N多遍,  支持 ((((3+2))))这种情况) :

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stack>
#include <queue>
using namespace std;

const int maxOp = 7;//符号的总数

struct  Pri      //设定运算符优先级
{
    char ch;     //运算符
    int pri;     //优先级
}lpri[] = {{'=', 0}, {'(', 1}, {'*', 5}, {'/', 5}, {'+', 3}, {'-', 3}, {')', 6}},
 rpri[] = {{'=', 0}, {'(', 6}, {'*', 4}, {'/', 4}, {'+', 2}, {'-', 2}, {')', 1}};

int LeftPri(char op)//求左运算符op的优先级
{
    for(int i = 0; i < maxOp; ++ i)
        if(lpri[i].ch == op)
            return lpri[i].pri;
}

int RightPri(char op)//求右运算符op的优先级
{
    for(int i = 0; i < maxOp; ++ i)
        if(rpri[i].ch == op)
            return rpri[i].pri;
}

bool IsOp(char ch)//判断符号ch是否为运算符
{
    if(ch == '(' || ch == ')' || ch == '+' || ch == '-' || ch == '*' || ch == '/')
        return true;
    return false;
}

int Precede(char op1, char op2) //op1和op2运算符优先级的比较结果
{
    int lPri = LeftPri(op1);
    int rPri = RightPri(op2);
    if(lPri == rPri)
        return 0;
    else if(lPri < rPri)
        return -1;
    else
        return 1;
}


void GetTwoFromStack(stack<double>& numStack, double& a, double& b)//从运算数栈中获取两个数,栈顶和次栈顶
{
    a = numStack.top();
    numStack.pop();
    b = numStack.top();
    numStack.pop();
}



double CalFromNumStack(stack<char>& opStack, stack<double>& numStack)
//从符号栈提取栈顶符号,利用运算数栈的栈顶和次栈顶进行计算,并把结果压入运算数栈中
{
    double a, b;
    char op = opStack.top();//运算符提取
    opStack.pop();//退栈
    GetTwoFromStack(numStack, a, b);//a,b为栈顶和次栈顶
    switch(op)
    {
    case '+':
        numStack.push(b + a);
        break;
    case '-':
        numStack.push(b - a);
        break;
    case '*':
        numStack.push(b * a);
        break;
    case '/':
        numStack.push((b / a));
        break;
    }//switch
}

float CalFromExp(char* exp)
{
    stack<char> opStack;//符号栈
    opStack.push('=');//'='优先级最低
    stack<double> numStack;//运算数栈
    while(*exp != '\0')
    {
        if(!IsOp(*exp)) //如果不是运算符
        {
            int n = 0;//提取数字
            while(*exp >= '0' && *exp <= '9')
            {
                n = n * 10 + (*exp - '0');
                exp ++;
            }
            numStack.push(n);//把提取出来的数压入运算数栈
        }
        else
        {
            int cmpPri = Precede(opStack.top(), *exp);
            if(cmpPri == 0)  // ')'遇到栈顶'('
            {
                opStack.pop();
                exp ++;
            }

            else if(cmpPri == -1)// 栈顶运算符优先级小
            {
                opStack.push(*exp);
                exp ++;
            }
            else  //栈顶运算符优先级大
            {
                while(Precede(opStack.top(), *exp) == 1)
                {
                    CalFromNumStack(opStack,numStack);
                }//while
            }
           // exp ++;//扫描下一个字符
        }//当前字符是运算符
    }

    while(opStack.top() != '=')//千万不能忘了这个!!
    {
        CalFromNumStack(opStack,numStack);
    }
    return numStack.top();
}
char exp[50];
char postExp[50];

int main()
{
    while(cin >> exp)
    {
        cout << "中缀表达式为: " << exp <<endl;
        //TransToPostExp(exp, postExp);//将算数表达式转化为后缀表达式,比如输入(56-20)/(4+2) ,输出 56#20#-4#2#+/
       // cout << "后缀表达式为: " << postExp <<endl;
        cout << "表达式的值为: " <<CalFromExp(exp) << endl << endl;
    }
    return 0;
}

及其容易出现错误的地方和情况1一样。


表达式求值是指将一个数学表达式计算出结果的过程。将中缀表达式转化后缀表达式是求解表达式求值的一种常用方法。后缀表达式也叫逆波兰表达式,它的特点是运算符位于操作数之后。通过扫描中缀表达式,按照一定的规则将其转换为后缀表达式,然后再根据后缀表达式进行计算,即可得到表达式的结果。 关于表达式求值,有几个关键的步骤: 1. 创建一个栈用于存储运算符和中间结果。 2. 从左到右扫描中缀表达式的每个字符。 3. 如果遇到操作数,则将其输出,如果遇到运算符,则将其压入栈中。 4. 如果遇到左括号,则将其压入栈中。 5. 如果遇到右括号,则持续弹出栈顶运算符并输出,直到遇到左括号为止。 6. 如果遇到优先级比栈顶运算符高的运算符,则将其压入栈中。 7. 如果遇到优先级比栈顶运算符低的运算符,则持续弹出栈顶运算符并输出,直到栈顶运算符优先级低于当前运算符或栈为空为止。 8. 重复步骤3到步骤7,直到扫描完整个中缀表达式。 9. 将栈中剩余的运算符依次弹出并输出。 对于后缀表达式的计算,可以利用栈来完成。从左到右扫描后缀表达式的每个字符,如果遇到操作数,则将其压入栈中,如果遇到运算符,则从栈中弹出两个操作数进行运算,并将结果压入栈中。最终,栈中的唯一元素即为表达式的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值