程序
文章平均质量分 80
SrdLaplaceGua
https://github.com/RDShi
展开
-
A holistic approach to semi-supervised learning
Berthelot D, Carlini N, Goodfellow I, et al. Mixmatch: A holistic approach to semi-supervised learning[J]. arXiv preprint arXiv:1905.02249, 2019.https://github.com/samihaija/mixhop半监督学习的核心想法是利用无标注的数...原创 2019-10-16 17:10:32 · 483 阅读 · 0 评论 -
Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation
Fan S, Zhu J, Han X, et al. Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation[J]. 2019.https://github.com/googlebaba/KDD2019-MEIRecAbstract与传统的查询推荐和项目推荐不同,意图推荐是在用户打开应用程序时...原创 2019-10-14 18:50:12 · 3341 阅读 · 1 评论 -
【阅读笔记】BERT 介绍和代码解读
最近玩了玩 BERT,做了一些实验,感觉还挺有意思的,写点东西记录一下,我会从粗到细,从简单到复杂,一层一层的说明白 BERT 的每一步。原创 2018-12-29 13:23:01 · 4419 阅读 · 0 评论 -
词向量总结
词向量词向量是自然语言理解的重要工具,它的核心思想是把词映射到一个向量空间,并且这个向量空间很大程度上保留了原本的语义。词向量既可以作为对语料进行数据挖掘的基础,也可以作为更复杂的模型的输入,是现在 nlp 的主流工具。下面就总结一下 nlp 中经典的词向量方法。主要有:onehot、glove、cbow、skip-gram原创 2018-12-03 13:21:27 · 1755 阅读 · 0 评论 -
Connectionist Temporal Classification(CTC)、音识别模型小型综述和一个简易的语音识别模型的tensorflow实现
CTC是一种端到端的语音识别技术,他避免了需要字或者音素级别的标注,只需要句子级别的标注就可以进行训练,感觉非常巧妙,也很符合神经网络浪潮人们的习惯。特别是LSTM+CTC相较于之前的DNN+HMM,LSTM能够更好的捕捉输入中的重要的点(LSTM随着状态数目增加参数呈线性增加,而HMM会平方增加),CTC打破了隐马尔科夫的假设,把整个模型从静态分类变成了序列分类。语音识别的评价指标在语音识别...原创 2018-10-17 17:28:52 · 1359 阅读 · 3 评论 -
声纹识别综述+一个简易的tensorflow实现的模型
声纹识别的历史和一个简单的声纹识别模型原创 2018-08-22 13:08:08 · 16558 阅读 · 17 评论 -
ImageNet训练完整流程
下载数据训练集(138G)验证集(6.3G-50000张)train_label.txtvalidation_label.txtp.s. 用迅雷下还挺快的,3天搞定数据解压tar xvf ILSVRC2012_img_train.tar -C ./train tar xvf ILSVRC2012_img_val.tar -C ./val对于train数据集,...原创 2018-08-29 23:16:10 · 26349 阅读 · 23 评论 -
用不同的损失函数训练神经网络初探
Similarity Learning and Loss FunctionSimilarity Learning也叫metric learning,是为了学习在原特征空间上的线性或非线性变换,使得在新的特征空间上相似度或者距离满足一定的性质。 深度学习在设计很多loss就用到了metric learning的想法。把最后一层特征空间作为新的度量空间,加入一些相应的loss,使得度量空间满足一...原创 2018-08-29 22:54:24 · 2830 阅读 · 0 评论 -
tflearn实现DenseNet
最近公司的8GPU的服务器就我一个人用,为了不浪费资源,自己瞎捣鼓捣鼓模型,搭个DenseNet玩玩,跑跑过大名鼎鼎的ImageNet。在实现的过程中发现了tensorflow的一个很大的缺点,希望有人感觉把这坑填上。DenseNet的想法和结构在CNN进化史里介绍过,就不赘述了,直接说实现的细节:architecture(结构):Composite functionH(x)H(x)...原创 2018-07-28 00:26:57 · 784 阅读 · 0 评论 -
排序算法总结
def quick_sort(lis,s,e,r): """ 优点:快速简洁,不需要额外内存 缺点:最差为n^2,不稳定,递归层数很深 trick:打乱,tail sort """ if s>=e: return if r<=0 or e-s < 5:原创 2018-07-10 00:09:48 · 267 阅读 · 0 评论