原题:
算法训练 纪念品分组
时间限制:1.0s 内存限制:256.0MB
问题描述
元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。为使得参加晚会的同学所获得的纪念品价值 相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品,并且每组纪念品的价格之和不能超过一个给定的整数。为了保证在尽量短的时 间内发完所有纪念品,乐乐希望分组的数目最少。
你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。
输入格式
输入包含n+2行:
第1行包括一个整数w,为每组纪念品价格之和的上限。
第2行为一个整数n,表示购来的纪念品的总件数。
第3~n+2行每行包含一个正整数pi (5 <= pi <= w),表示所对应纪念品的价格。
输出格式
输出仅一行,包含一个整数,即最少的分组数目。
样例输入
100
9
90
20
20
30
50
60
70
80
90
样例输出
6
数据规模和约定
50%的数据满足:1 <= n <= 15
100%的数据满足:1 <= n <= 30000, 80 <= w <= 200
分析:
先对数组进行从小到大排序,然后设i,j两个指标分别从头和尾遍历,如果num[i] + num[j] >w,则只有j--;否则i++;j--;并且每次循环计数器++。
#include <algorithm>
#include <iostream>
using namespace std;
int main()
{
int n,m;
cin>>n>>m;
int num[m],sum = 0;
for(int i = 0;i < m;i++)
cin>>num[i];
sort(num,num + m);
int i = 0,j = m - 1;
while(i <= j)
{
if(num[i] + num[j] <= n)
i++;
j--;
sum++;
}
cout<<sum;
return 0;
}