原题链接:https://www.acwing.com/problem/content/description/137/
单调队列模板:
int l=1,r=1;
q[1]=0;
for(int i=1;i<=n;i++){
while(l<=r&&q[l]<i-m) l++;
ans=max(ans,sum[i]-sum[q[l]]);
while(l<=r&&sum[q[r]]>=sum[i]) r--;
q[++r]=i;
}
思路:单调队列。记录前缀和,区间的和就等于sum[r]-sum[l-1],那么我们就要求出一个区间使区间的长度<=m并且区间和最大。我们固定右端点i,那么就要找到一个左端点j使s[j]最小。
步骤:
代码如下:
(1)模板做法:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 300005;
int n,m,q[maxn]
typedef long long ll;
ll sum[maxn],ans=-0x3f3f3f3f;//因为数字可能为负数,所以这里用负无穷
int main(){
cin>>n>>m;
sum[0]=0;
for(int i=1;i<=n;i++){
cin>>sum[i];
q[i]=i;
sum[i]+=sum[i-1];
}
int l=1,r=1;
q[1]=0;//保存l=r时的选择,此时只有一个数
for(int i=1;i<=n;i++){
while(l<=r&&q[l]<i-m) l++;//维护对手,如果队头已经超出范围,l++
ans=max(ans,sum[i]-sum[q[l]]);//此时队头就是右端点为i时,左端点j的最优选择
while(l<=r&&sum[q[r]]>=sum[i]) r--;//不断删除队尾决策,直至最优
q[++r]=i;//将i作为一个新的决策入队
}
cout<<ans<<endl;
return 0;
}
(2)双端队列 deque做法:
关于deque的知识:https://www.cnblogs.com/linuxAndMcu/p/10260124.html
#include <bits/stdc++.h>
using namespace std;
#define N 3000005
typedef long long ll;
ll sum[N],ans=-0x3f3f3f3f;
deque<ll> q;
int main(){
int n,m;
cin>>n>>m;
sum[0]=0;
for(int i=1;i<=n;i++){
cin>>sum[i];
sum[i]+=sum[i-1];
}
q.push_back(0);
//思路一样,只不过换了个写法,利用了deque的一些函数,方便
for(int i=1;i<=n;i++){
while(q.size()&&q.front()<i-m) q.pop_front();
ans=max(ans,sum[i]-sum[q.front()]);
while(q.size()&&sum[q.back()]>=sum[i]) q.pop_back();
q.push_back(i);
}
cout<<ans<<endl;
return 0;
}