最大子序和 单调队列 模板做法/deque做法

原题链接:https://www.acwing.com/problem/content/description/137/

单调队列模板:

int l=1,r=1;
q[1]=0;
for(int i=1;i<=n;i++){
	while(l<=r&&q[l]<i-m) l++;
	ans=max(ans,sum[i]-sum[q[l]]);
	while(l<=r&&sum[q[r]]>=sum[i]) r--;
	q[++r]=i;
} 

思路:单调队列。记录前缀和,区间的和就等于sum[r]-sum[l-1],那么我们就要求出一个区间使区间的长度<=m并且区间和最大。我们固定右端点i,那么就要找到一个左端点j使s[j]最小。

步骤

1.png

代码如下:

(1)模板做法:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 300005;
int n,m,q[maxn]
typedef long long ll;
ll sum[maxn],ans=-0x3f3f3f3f;//因为数字可能为负数,所以这里用负无穷 
int main(){
	cin>>n>>m;
	sum[0]=0;
	for(int i=1;i<=n;i++){
		cin>>sum[i];
		q[i]=i;
		sum[i]+=sum[i-1];
	}
	int l=1,r=1;
	q[1]=0;//保存l=r时的选择,此时只有一个数 
	for(int i=1;i<=n;i++){
		while(l<=r&&q[l]<i-m) l++;//维护对手,如果队头已经超出范围,l++ 
		ans=max(ans,sum[i]-sum[q[l]]);//此时队头就是右端点为i时,左端点j的最优选择 
		while(l<=r&&sum[q[r]]>=sum[i]) r--;//不断删除队尾决策,直至最优 
		q[++r]=i;//将i作为一个新的决策入队 
	}
	cout<<ans<<endl;
	return 0;
}

(2)双端队列 deque做法:

关于deque的知识https://www.cnblogs.com/linuxAndMcu/p/10260124.html

#include <bits/stdc++.h>
using namespace std;
#define N 3000005
typedef long long ll;
ll sum[N],ans=-0x3f3f3f3f;
deque<ll> q;
int main(){
	int n,m;
	cin>>n>>m;
	sum[0]=0;
	for(int i=1;i<=n;i++){
		cin>>sum[i];
		sum[i]+=sum[i-1];
	}
	q.push_back(0);
	//思路一样,只不过换了个写法,利用了deque的一些函数,方便 
	for(int i=1;i<=n;i++){
		while(q.size()&&q.front()<i-m) q.pop_front();
		ans=max(ans,sum[i]-sum[q.front()]);
		while(q.size()&&sum[q.back()]>=sum[i]) q.pop_back();
		q.push_back(i);
	}
	cout<<ans<<endl;
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值