G.Lexicographical Maximum
题意:
给出一个数字n(n可能会很大),求出1-n之间字典序最大的数字。
思路:
要实现字典序最大,那么肯定以9开头。 先考虑特殊情况,只有一位数字时,那么肯定就是n。
否则,设数字n的位数为len,那么先是len-1位的9,再看如果数字n的前n-1位都是9,那么最后再加上n的最后一位,就是字典序最大的,就是n。如果不是,那么就输出n-1位的9。
因为n可能很大,所以以字符串形式输入。
考察:
字典序最大
代码:
#include <bits/stdc++.h>
using namespace std;
int main(){
string s;
cin>>s;
int len=s.size();
if(len==1){
cout<<s;
return 0;
}
int f=0;
string ss="";
for(int i=0;i<len-1;i++){
cout<<"9";
if(s[i]!='9') f=1;
}
if(f==0) cout<<s[len-1];
return 0;
}
A.Villages: Landlines
题意:
给出一个发电站和多个建筑物的一维坐标,需要通过电塔和电线将它们全部连接起来,实现所用电线长度最短。在发电站/建筑物半径范围内可以直接与电塔相连,电塔与电塔之间通过电线相连。
思路:
将每个坐标及半径转化为区间,将相交的区间进行合并(按左端点对区间进行排序,从左到右依次合并,这样得到的大区间之间一定不会相交),最后要实现相连,就是每个大区间之间的距离相加。如果最后合并得到的只有一个区间,那么所用电线长度为0.
考察:
区间合并
Notice:
因为r范围位-1e9~1e9,所以要边界要比2e9要大,我用的是3e9,并且用了long long。最开始错误是因为在从左到右只考虑了右端点,而不是考虑的区间,因此容易出现当后面的覆盖前面时造成所求距离缩短的情况。因此需要先实现区间的合并,再求大区间之间的距离。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
vector<PII> p,q;
struct node{
ll x,r;
}a[200005];
inline void solve(){
ll n;
scanf("%lld",&n);
for(ll i=0;i<n;i++){
scanf("%lld%lld",&a[i].x,&a[i].r);
p.push_back({a[i].x-a[i].r,a[i].x+a[i].r});//将坐标和半径转化为区间
}
sort(p.begin(),p.end());//按左端点排序
ll st=-3e9,ed=-3e9;//设置初始边界
for(auto num:p)
{
if(ed<num.first) //单独成段的
{
if(ed!=-3e9) q.push_back({st,ed}) ; //如果ed<num.first 且ed!=-3e9,说明区间不能再合并了
st=num.first,ed=num.second ; //更新st和ed
}
else if(ed<num.second) //能合并的,更新ed
ed=num.second ;
}
if(st!=-3e9&&ed!=-3e9) q.push_back({st,ed});//把最后一个区间加入
if(q.size()==1) puts("0");//最后只剩一个区间
else{//累计大区间之间的距离
ll ans=0;
ll l=q[0].second;
for(ll i=1;i<q.size();i++){
ll r=q[i].first;
ans+=(r-l);
l=q[i].second;
}
printf("%lld\n",ans);
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
ll t;
t=1;
while(t--){
solve();
}
return 0;
}
区间合并模板:
sort(p.begin(),p.end());//按左端点排序
ll st=-3e9,ed=-3e9;//设置初始边界
for(auto num:p)
{
if(ed<num.first) //单独成段的
{
if(ed!=-3e9) q.push_back({st,ed}) ; //如果ed<num.first 且ed!=-3e9,说明区间不能再合并了
st=num.first,ed=num.second ; //更新st和ed
}
else if(ed<num.second) //能合并的,更新ed
ed=num.second ;
}
if(st!=-3e9&&ed!=-3e9) q.push_back({st,ed});//把最后一个区间加入
D.Mocha and Railgun
题意:
给出一个圆心为C(0,0)的圆墙,一个点Q(x,y)和d,Q为线段AB的中心,线段的长度为2d。求能够映射的弧的最长长度。线段AB端点严格在圆墙内。
思路:
在弧度制下,若弧所对的圆心角为θ,则有公式l=Rθ。
rsinθ=L+d
θ=arcsin((L+d)/r)
考察:
平面计算几何
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline void solve(){
double r,x,y,d;
scanf("%lf%lf%lf%lf",&r,&x,&y,&d);
double h=sqrt(x*x+y*y);
printf("%.10lf\n",r*(asin((d+h)/r)-asin((h-d)/r)));
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int t;
scanf("%d",&t);
while(t--){
solve();
}
return 0;
}