- 博客(79)
- 收藏
- 关注
原创 LangChain 表达式语言快速参考指南
LangChain 提供了灵活的表达式语言工具,支持我们轻松地构建高效、可重用的函数调用链。这篇快速参考手册应该可以帮助你更好地理解 LCEL 的核心功能。如果大家在使用中遇到问题,欢迎在评论区交流哦~今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-30 01:11:02
319
原创 使用TensorFlow Datasets加载和处理数据
说白了,TensorFlow Datasets就是一堆好用的数据集,你不用自己去烦心数据清洗和格式化的问题。它帮我们做好了,而且还支持你想要的几乎所有数据集格式。强烈建议看看官方指南和数据集列表。接下来,我们以MLQA(Multilingual Question Answering)数据集为例展示如何使用。老铁们,今天我们通过一个实际案例介绍了如何使用TensorFlow Datasets加载和处理数据。这个工具的强大之处在于它能让你专注于模型和算法,而不需要在数据准备上花费太多时间。
2024-12-28 14:11:30
689
原创 利用ScrapFly进行网页数据抓取与处理
在开发中,常常需要获取网站上的数据进行分析或展示,但有些网站的反爬机制让我们感到头疼。ScrapFly正是为了解决这些问题而生的。它集成了代理、JavaScript渲染和反爬绕过等功能,让我们能专注于数据本身,而不需要去折腾如何绕过这些防护。我个人一直在用提供的一站式方案,感觉会事半功倍。总体来说,ScrapFly是一个非常强大的工具,不仅简化了数据抓取的流程,还大大提升了数据处理的效率和可靠性。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-28 12:59:30
1179
原创 使用2MarkdownService将网站内容转换为Markdown文件
的API非常直观,基本就是初始化和加载两个步骤。具体的文档可以参考官方给出的API Reference文档。,然后用你的API key初始化加载器,接着加载需要转换的网站URL,就能得到Markdown格式的内容了。说白了,这玩意就是用来把数据加载成Markdown格式的工具。看下面的代码示例,直接上手。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~我们要用到的是一个名为。
2024-12-26 20:36:07
236
原创 从 MapReduceDocumentsChain 迁移到 LangGraph 的实战指南
是一种经典的处理长文本的策略,它通过将文本分割成更小的文档(Map 阶段)然后对结果进行整合(Reduce 阶段)来实现,例如文本摘要。Map 阶段通常是并行的,这是因为我们可以同时处理许多文档。LangGraph 则是在这个基础上更进一步,不仅支持 map-reduce 工作流,还提供了对执行流的更细化控制。说白了,LangGraph 就是在MapReduceDocumentsChain的基础上提升了执行控制的颗粒度和可靠性,是非常值得一试的优化工具。
2024-12-25 06:42:23
441
原创 从 LLMChain 迁移到 LCEL 的实用指南
LLMChain 是一个将 prompt 模板、LLM(大语言模型)和输出解析器结合在一起的类,用于处理自然语言生成任务。然而,它可能在某些方面不是那么灵活,比如在默认输出解析和流处理方面。我们来看一下 LCEL 如何解决这些问题,并给出其带来的优点。通过上面的步骤,我们实现了从LLMChain到LCEL的平滑迁移,简化了流处理、参数管理和输出解析等环节。这波操作可以说是相当丝滑,不仅提升了代码的可读性,还增强了系统的灵活性。今天的技术分享就到这里,希望对大家有帮助。
2024-12-25 06:31:03
370
原创 如何组合多个检索器的结果
老铁们,今天我们来聊聊如何通过组合多个检索器的结果来提升信息检索的效果。是一个支持对多个检索器结果进行合并的工具。它主要通过一种叫做的算法对检索器的结果进行重新排序。通过结合不同算法的优点,通常可以获得比任何单一算法更好的性能。最常见的组合方式是将稀疏检索器(如BM25)与密集检索器(如嵌入相似性)结合在一起,因为两者的优势是互补的。这种方式也被称为"混合搜索"。稀疏检索器擅长根据关键词查找相关文档,而密集检索器擅长根据语义相似性查找相关文档。
2024-12-24 23:23:40
208
原创 在LangChain YouTube视频查询分析器中添加示例以增强LLM的理解
在构建LangChain的YouTube视频查询分析器过程中,我们可能会发现,随着查询的复杂性增加,LLM在特定场景下可能无法准确理解如何响应。为了解决这个问题,添加示例到我们的提示中可以引导模型更好地理解和生成结果。说白了,添加示例到LLM的提示中就是为了给模型搭建一个“引导轨道”,让它能够更聪明地处理复杂的查询及其细分。通过不断地调优和实验,咱们可以显著提高模型的输出质量。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-24 16:41:43
287
原创 使用SemaDB构建AI应用程序的指南
首先,大家要知道,SemaDB是为处理向量相似度查询而设计的,这在现代AI应用中非常有用。特别是在文本理解和自然语言处理领域,向量相似度可以帮助我们快速找到相关内容。在清理数据时,可以通过删除集合来移除所有数据。如果你对向量存储有更多兴趣,可以查阅向量存储概念指南和向量存储使用指南。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-23 04:19:22
366
原创 使用 Apache Cassandra 作为向量存储的快速入门指南
")")")")想了解更多关于如何使用 LangChain Cassandra 向量存储的信息,请访问CassIO 文档。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-23 00:10:26
393
原创 从Modern Treasury REST API加载数据并进行向量化处理
我个人一直在用这样的工具组合来提高开发效率,尤其是在需要大规模处理支付数据的时候。对于初次使用LangChain的朋友们,可以查看LangChain文档获得更多信息。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~---END---
2024-12-22 16:02:56
202
原创 探索Fauna数据库:从入门到API查询实现
通过本文,您应该对Fauna数据库有了基本的了解,并掌握了一些查询技巧。Fauna官方文档FaunaLoader API参考。
2024-12-22 13:41:11
231
原创 探索Acreom与Langchain的集成:本地知识库的加载指南
通过Acreom与Langchain的集成,开发者们可以更轻松地管理和处理本地知识库。Acreom官方文档Langchain文档加载器指南Markdown文件处理技巧。
2024-12-22 08:51:08
452
原创 [利用Langchain与YandexGPT模型进行高级文本嵌入:从入门到精通]
利用YandexGPT的嵌入模型可以显著提升文本处理能力。YandexGPT文档Langchain官方文档Python官方文档。
2024-12-22 08:45:14
186
原创 探索SparkLLM文本嵌入:理解与实现指南
SparkLLM文本嵌入是一个强大的工具,提供了高达2560维的向量表示,支持2K token的窗口。其应用主要集中于语义搜索、文本分类、情感分析和问答系统等领域。通过将文本转换为数值向量,SparkLLM嵌入能够帮助机器更好地理解和处理人类语言。SparkLLM官方文档嵌入模型概念指南嵌入模型实践指南通过本文,我们探索了如何在项目中集成SparkLLM文本嵌入,并讨论了可能遇到的挑战及其解决方案。希望这些信息能够帮助你在自然语言处理的道路上走得更远!
2024-12-22 07:53:33
361
原创 揭秘百度千帆平台:开发者如何利用Langchain实现嵌入式AI模型
千帆平台支持各种AI开发工具和完整的开发环境,并提供文心一言(ERNIE-Bot)以及第三方开源模型。开发者可以轻松使用和开发大模型应用。百度千帆平台提供了强大的AI模型开发功能,结合Langchain,开发者可以更高效地进行AI应用开发。百度AI云千帆平台文档Langchain官方文档。
2024-12-22 03:14:09
744
原创 探索OctoAI与LangChain的集成:轻松搭建AI应用
通过本文,我们展示了如何使用LangChain与OctoAI集成来构建强大的AI应用。LLM概念指南LLM操作指南。
2024-12-21 23:51:32
263
原创 探索Manifest和LangChain:如何在本地使用Hugging Face模型进行文本处理
{text}Manifest GitHub项目LangChain的LLM概念指南LangChain的如何引导。
2024-12-21 22:57:44
432
原创 [使用ExLlamaV2在本地运行大语言模型(LLMs):入门指南]
这篇文章简要介绍了ExLlamaV2的安装与使用,通过结合LangChain实现本地运行大语言模型。对于希望深入了解LLM运行的开发者,可以参考下面的资源。
2024-12-21 20:51:33
447
原创 探索Fireworks AI:集成与最佳实践
通过本文,您已经了解了如何与Fireworks AI集成,并使用LangChain库来调用和配置聊天模型。我们也讨论了常见的挑战及其解决方案。LangChain Fireworks API文档Fireworks官网文档。
2024-12-21 15:09:00
818
原创 使用Baichuan-192K API轻松实现智能对话:完整指南
Baichuan-192K API为开发者提供了集成智能对话功能的强大工具。通过了解其使用方法和常见问题的解决方案,可以更好地在项目中应用这一技术。Baichuan AI平台文档Langchain库官方指南。
2024-12-21 14:21:01
323
原创 [通过Azure AI Search Retriever实现智能信息检索:全面指南]
环境安装您需要安装及其依赖包:实例化Azure AI Search Retriever代码示例以下是一个完整的代码示例,展示如何使用Azure AI Search Retriever进行信息检索:常见问题和解决方案问题1:API访问不稳定由于某些地区的网络限制,API可能无法稳定访问。为解决此问题,可以考虑使用API代理服务提高访问稳定性。确保所需的API密钥和环境变量正确配置,并检查网络连接。Azure AI Search Retriever为开发者提供了强大的信息检索能力。通过本文的介绍
2024-12-21 12:39:11
379
原创 [探索Azure Cosmos DB中的NoSQL向量搜索:自动化、可扩展的AI数据存储]
Azure Cosmos DB是支持多种数据模型的分布式数据库服务,以其全球分布范围和卓越性能而闻名。它支持低于10毫秒的响应时间,即时可扩展性,并保证在任何规模下的速度。特别是,对于OpenAI的ChatGPT服务,也在使用Azure Cosmos DB进行数据存储。Azure Cosmos DB为处理高维向量和标准文档数据提供了灵活而高效的解决方案。无论是用于AI训练数据的存储,还是实时推荐系统的实现,Azure Cosmos DB都展示了其强大的能力。Azure Cosmos DB 官方文档。
2024-12-21 12:32:56
542
原创 **掌握Word文档处理:使用Python加载和解析Word内容的多种方法**
在本文中,我们探讨了如何通过Docx2txt、Unstructured和Azure AI Document Intelligence来加载和解析Word文档。每种方法都有其特定的优势,选择适合您需求的工具将大大提升文档处理效率。官方文档:Docx2txt文档Unstructured GitHub仓库。
2024-12-21 12:05:19
389
原创 [解锁Google Cloud Storage:如何从GCS文件中加载文档对象]
通过使用和自定义加载函数,我们可以轻松从Google Cloud Storage中提取和处理文件。Document loader 概念指南Document loader 如何指南。
2024-12-21 06:47:48
395
原创 利用LangChain高效访问Stack Exchange API的全面指南
通过LangChain集成Stack Exchange API,您可以方便地从广泛的问答资源中获取数据,为您的应用提供支持。有兴趣的读者可以深入阅读LangChain和Stack Exchange API的官方文档,以获取更多功能的详细介绍。
2024-12-20 23:35:39
642
原创 **使用RAGatouille优化搜索体验——借助ColBERT实现高效文本检索**
RAGatouille是一个工具包,可以将ColBERT集成到您的文本检索系统中。ColBERT是一种快速且准确的检索模型,可以在大规模文本集合中进行高效搜索。通过RAGatouille和ColBERT的结合,您可以在大规模文本集合中实现快速而准确的检索。这种方法不仅能提高搜索的效率,还可以提升搜索结果的相关性。
2024-12-20 21:34:11
702
原创 使用OpenLLM和LangChain构建强大的AI应用:从安装到部署
OpenLLM为开发者提供了一个简单而强大的平台,用于操作和部署大型语言模型。结合LangChain,你可以轻松构建和扩展AI应用。OpenLLM官方文档LangChain社区文档大型语言模型研究论文。
2024-12-20 19:51:01
607
原创 [解锁Notion的强大功能:使用NotionDB管理你的数据]
通过本文的介绍,你应该对如何使用NotionDBLoader有了更深入的了解。Notion作为一款强大的生产力工具,其数据库功能可以显著提升你的数据管理效率。Notion 官方文档Langchain 社区资源Python 官方文档。
2024-12-20 19:26:12
471
原创 [无限可能的文本嵌入:探索Infinity Embeddings的强大功能]
Infinity Embeddings为NLP开发者提供了一个强大的工具,用于生成文本嵌入。通过本文的介绍,您应该了解了如何使用这一工具,以及在不同网络条件下如何保持访问稳定。Infinity Embeddings API文档LangChain社区提供的使用示例。
2024-12-20 15:57:46
423
原创 [揭秘IMSDb的强大功能:轻松访问海量电影剧本资源]
IMSDbLoader是一个简单而有效的工具,可以帮助开发者和电影爱好者快速访问和处理电影剧本。了解如何使用它,可以为您的工作增加不少便利。
2024-12-20 15:46:33
579
原创 探索以太坊的世界:使用Etherscan进行区块链分析
Etherscan API是一个强大且丰富的工具,能够帮助你深入探测和分析以太坊区块链的数据。本文介绍了基本的安装、配置和使用方法。对于想要深入探索以太坊生态系统的开发者和研究人员,Etherscan提供的多样化功能将是不可或缺的。
2024-12-20 13:28:34
1154
原创 探索Docusaurus与文档站点生成的完美结合
Docusaurus提供简便的方式来创建静态网站,特别适合用来开发技术文档。它支持Markdown语法,并与现代前端工具如React无缝集成,提供丰富的插件和主题支持。Docusaurus是创建美观且功能强大的文档站点的绝佳工具。结合Python的文档加载能力,可以让开发者更有效地管理和展示项目文档。Docusaurus官网BeautifulSoup文档。
2024-12-20 12:48:47
462
原创 探索CerebriumAI:无服务器GPU架构助力LLM应用
CerebriumAI 提供了一种无服务器的解决方案,允许开发者通过API访问多种大型语言模型(LLMs)。这使得开发者可以在不需要管理复杂硬件的情况下进行大规模计算,从而专注于模型的开发和优化。CerebriumAI为需要大规模计算能力的开发者提供了一个灵活且强大的解决方案。通过简单的API集成和无服务器架构,它使得部署和训练大型语言模型变得更加高效。未来,您可以探索其文档以发现更多高级功能,并优化您的AI应用。
2024-12-20 10:08:25
542
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人