知识图谱
小楼闻夜雨
转:生活最主要的还是感受,坚持是一种刻意的练习,不断寻找缺点突破缺点的过程,而不是重复做某件事情。
展开
-
搜索引擎和知识图谱
转自Eastmount的专栏搜索引擎和知识图谱那些事 (上).基础篇转载 2017-10-10 10:21:59 · 1998 阅读 · 0 评论 -
关系抽取相关调研
博客基于深度学习的关系抽取硕士论文2013文本挖掘中的中文实体关系抽取百度文库:实体关系抽取的技术方法综述2008原创 2017-10-11 15:48:44 · 678 阅读 · 0 评论 -
实体对齐
实体(Entity)是指客观存在并可相互区别的事物,包括具体的人、事、物、抽象的概念或联系,知识库中包含多种类别的实体。实体对齐(Entity Alignment)也被称作实体匹配(Entity Matching),是指对于异构数据源知识库中的各个实体,找出属于现实世界中的同一实体。随着中文网络百科的不断完善,可以从网络百科页面抽取出实体,并对不同来源的实体进行对齐,构建高质量的中文异构百科RDF原创 2017-10-11 10:51:26 · 19906 阅读 · 0 评论 -
知识图谱调研
最全知识图谱介绍:关键技术、开放数据集、应用案例汇总原创 2017-10-12 10:35:23 · 1259 阅读 · 0 评论 -
DBLP数据集调研
数据集下载链接及处理方法原创 2017-10-17 13:47:53 · 1421 阅读 · 0 评论 -
实体消歧,实体识别,实体融合,知识融合概述
实体消歧问题是当下比较热点的研究问题,国内外的大多熟研究从两个角度解决实体歧义造成的影响,分别是通过寻求更高质量的特征和引入外部资源辅助消解。在特征选取方面,何正焱[2]利用DNN(深度神经网络)方法,提出了一种文档和实体的相似度为框架的消歧模型;姜丽丽[3]提出了一种基于带权图结构的框架来实现人物实体的消歧工作,并使用实体标签对每个人物实体进行标注;Bagga和Baldwin[4]将不同文档原创 2017-06-05 21:46:33 · 17373 阅读 · 0 评论