从到杨辉三角组合数

今天,我在网上冲浪时,意外发现了杨辉三角和组合数的联系。

我们先给出杨辉三角!
在这里插入图片描述
然后,你会发现C(I,J)=f[i][j]
不信我们可以写个代码证明一下!

#include<bits/stdc++.h>
using namespace std;
long long C(long long a,long long b)
{
	long long ji,ji1;
	ji=ji1=1;
	for(int i=a;i>=a-b+1;i--)
	{
		ji*=i;
	}
	for(int i=1;i<=b;i++)
	{
		ji1*=i;
	}
	return ji/ji1;
}//求组合数 
int main(){
	for(int i=1;i<=9;i++)//杨辉三角的格式来看看 
	{
		if(i==1)
		{for(int j=1;j<=i;j++)
		{
			cout<<C(i,j)<<' ';
		}
		}
		else{
		for(int j=0;j<=i;j++)
		{
			cout<<C(i,j)<<' ';
		}}
		cout<<endl;
	}
	return 0;
}

在这里插入图片描述
通过比对,可以发现,两者完全一致
所以以后知道咱们该怎样高效求组合数了吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值