一个桶里面有白球、黑球各100个,现在按下述规则取球:的
i 、每次从通里面拿出来两个球;
ii、如果取出的是两个同色的求,就再放入一个黑球;
ii、如果取出的是两个异色的求,就再放入一个白球。
i 、每次从通里面拿出来两个球;
ii、如果取出的是两个同色的求,就再放入一个黑球;
ii、如果取出的是两个异色的求,就再放入一个白球。
问:最后桶里面只剩下一个黑球的概率是多少?
相同为 0 相异为1;
可定白球为1,黑球为0;
任意取球的结果 就是 100个0和100个1的无序的异或运算结果
据异或运算的交换率 a⊕b⊕c=a⊕c⊕b
所以无序异或可化简为1⊕1⊕.....⊕1(100个)⊕0⊕0⊕...⊕0(100个)=0;