axis2c 安装使用 心得

用户手册:http://axis.apache.org/axis2/c/core/docs/axis2c_manual.html

使用源码包 在suse上安装成功,在fedora上失败了,提示是编译器问题,未解决

安装流程:http://www.cnblogs.com/fjchenqian/archive/2012/08/05/2623601.html


使用中 对services.xml 进行了测试

<service name="hello">  这个hello是自定义的,只用来标识属性。可以任意定义
 <parameter name="ServiceClass" locked="xsd:false">hello</parameter>这个hello用来标识 libhello.so 名字要和编译的链接库一致
 <description>
 Quick start guide hello service sample.
 </description>
 <operation name="greet"/>
</service>

在将编译的服务链接库 放入 services/hello/  下

这个hello 是用网页显示的http://186.100.8.117:8775/axis2/services

时候 标识服务名称的名字。

operation 中的name 显示在网页,并且 是实际请求中的 命名。

中间的param 表示了 如何处理rest风格。

所以可以将rest和soap进行统一处理

底层会直接对比xml中option的名字,根据来的xml来进行过滤。

最后的option处理 还是需要自己来写

主要内容:本文详细介绍了一种QRBiLSTM(分位数回归双向长短期记忆网络)的时间序列区间预测方法。首先介绍了项目背景以及模型的优势,比如能够有效利用双向的信息,并对未来的趋势上限和下限做出估计。接着从数据生成出发讲述了具体的代码操作过程:数据预处理,搭建模型,进行训练,并最终可视化预测结果与计算分位数回归的边界线。提供的示例代码可以完全运行并且包含了数据生成环节,便于新手快速上手,深入学习。此外还指出了模型未来发展的方向,例如加入额外的输入特性和改善超参数配置等途径提高模型的表现。文中强调了时间序列的标准化和平稳检验,在样本划分阶段需要按时间序列顺序进行划分,并在训练阶段采取合适的手段预防过度拟合发生。 适合人群:对于希望学习和应用双向长短时记忆网络解决时序数据预测的初学者和具有一定基础的研究人员。尤其适用于有金融数据分析需求、需要做多一步或多步预测任务的从业者。 使用场景及目标:应用于金融市场波动预报、天气状况变化预测或是物流管理等多个领域内的决策支持。主要目的在于不仅能够提供精确的数值预计还能描绘出相应的区间概率图以增强结论置信程度。 补充说明:本教程通过一个由正弦信号加白噪构造而成的简单实例来指导大家理解和执行QRBiLSTM流程的所有关键步骤,这既方便于初学者跟踪学习,又有利于专业人士作为现有系统的补充参考工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值