19/11/11 CSP-S模拟 T1(二分)T2(组合数)(巧妙找规律)

今天又考试了…
T1几乎全班满分,我才30分,我打的暴力都有70分…
后面的题一分没拿,实在是失策…

垃圾话时间结束,下面开始看T1:
在这里插入图片描述
暴力70分的做法是枚举每一个工作人员 i i i,再枚举每个工作人员 i i i前的 [ 1 , i − 1 ] [1,i-1] [1,i1]个工作人员中长度和小于等于 s s s的个数。
正解其实也很显然,先降序排列人的长度,再同样枚举每个工作人员 i i i,然后二分搜索 [ i + 1 , n ] [i+1,n] [i+1,n]中与 i i i之和小于等于 s s s的最大值 j j j,第 i i i个人的答案即为 n − j + 1 n-j+1 nj+1,最后累计求和即可。

上代码:

#include<bits/stdc++.h>
using namespace std;
#define in read()

int in
{
	int i=0;char ch=0;
	while(!isdigit(ch)) ch=getchar();
	while(isdigit(ch)) i=i*10+ch-'0',ch=getchar();
	return i;
}

int n,s,an,a[200005];
long long ans;

bool comp(const int &x,const int &y)
{
	return x>y;
}

int find(int l,int r)
{
	int data=a[l-1];
	while(l<r)
	{
		int mid=l+r>>1;
		if(a[mid]+data<=s) r=mid;
		else l=mid+1;
	}
	return l;
}

int main()
{
	n=in;s=in;
	for(int i=1;i<=n;i++) a[i]=in;
	sort(a+1,a+n+1,comp);
	for(int i=1;i<=n;i++)
	{
		if(a[i]>=s) continue;
		an=find(i+1,n);
		ans+=(long long)n-an+1;
	}
	printf("%lld",ans);
	return 0;
}

也可以用 l o w e r b o u n d lowerbound lowerbound代替二分~~,但我用的不熟就没有用~~ 。

下面是T2:
在这里插入图片描述
这道题的解法十分巧妙,设选出来的数为 a 1 , a 2 , a 3 , . . . , a m a_1,a_2,a_3,...,a_m a1,a2,a3,...,am,考虑用 b i = a i + i b_i=a_i+i bi=ai+i,则 b b b中全是偶数且两两互不相同,一个 b b b唯一对应一个 a a a
所以问题转化为求从 [ 1 , n + m ] [1,n+m] [1,n+m]中选 m m m个偶数的方案数,剩下的就是一个基础的 组合数问题(我今天才弄懂),方案数为 C m ( n + m ) / 2 C^{(n+m)/2}_m Cm(n+m)/2

代码如下:

#include<bits/stdc++.h>
using namespace std;
#define ll long long

const int mod=998244353;
int T,n,m,fac[1000005],inv[1000005];
ll ans;

int pwr(int x,int y)
{
	int ans=1;
	for(;y;y>>=1,x=(ll)x*x%mod) if(y&1) ans=(ll)ans*x%mod;
	return ans;
}

void pre(int n)
{
	fac[0]=1;for(int i=1;i<=n;i++) fac[i]=(ll)fac[i-1]*i%mod;
	inv[n]=pwr(fac[n],mod-2);for(int i=n-1;i>=0;i--) inv[i]=(ll)inv[i+1]*(i+1)%mod; 
}

ll zh(int x,int y) {return (ll)fac[x]*inv[y]%mod*inv[x-y]%mod;}

int main()
{
	freopen("temple.in","r",stdin);
	freopen("temple.out","w",stdout);
	scanf("%d",&T);
	pre(1e6);
	while(T--)
	{
		scanf("%d%d",&n,&m);
		ans=zh((n+m)/2,m);
		printf("%lld\n",ans%mod);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值