bzoj 2301 [HAOI2011]Problem b (莫比乌斯反演)

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3



HINT



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000


题意:给定两个数x,y,   a <= x <= b, c <= y <= d,让你求有多少对gcd(x,y) == k。gcd(x,y) 和 gcd(y,x)算两对。

我们前面做过求 [1,b] 区间与 [1,d] 区间的 gcd(x,y) == k的题(如果没做过,请点击这里)。

我们先令:

a = (a-1)/k;
b = b/k;
c = (c-1)/k;
d = d/k;

这题我们可以先求出[1,b] 与 [1,d]的答案,但是这里会有重复,因为[1,a] 和 [1,c]区间都不在范围内,这里面就多算了 [1,a] 与 [1,c] 、[1,a]与[1,d] 、 [1,c]与[1,b],

所以最后的答案就是  solve(b,d) - solve(a,d) - solve(c,b) + solve(a,c); (因为[1,a] 与 [1,c] 这个区间被减了两次,所以加上一次)


而且这题数据组数很多,所以得分块处理,对于一个i,到min(b/(b/i),d/(d/i))这一段的值都是一样的,所以一起加到答案上就行了,提前处理一下莫比乌斯函数的前缀和。


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;

const int maxn = 1e5 + 10;
int p[maxn/10];
int flag[maxn];
int mu[maxn];
int cnt = 0;
int sum[maxn];

void init()
{
    int i,j;
    mu[1] = 1;
    for(i=2;i<maxn;i++)
    {
        if(!flag[i])
        {
            p[cnt++] = i;
            mu[i] = -1;
        }
        for(j=0;j<cnt&&p[j]*i<maxn;j++)
        {
            flag[p[j]*i] = 1;
            if(i % p[j] == 0)
            {
                mu[p[j]*i] = 0;
                break;
            }
            mu[p[j]*i] = -mu[i];
        }

    }
    for(i=1;i<maxn;i++)
        sum[i] = sum[i-1] + mu[i];
}

LL solve(int b,int d)
{
    LL ans = 0;
    for(int i=1,last = 0;i<=min(b,d);i=last+1)
    {
        last = min(b/(b/i),d/(d/i));
        ans += (LL)(b/i)*(d/i)*(sum[last]-sum[i-1]);
    }
    return ans;
}
int main(void)
{
    int T,a,b,c,d,k,i,j;
    init();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        a = (a-1)/k;
        b = b/k;
        c = (c-1)/k;
        d = d/k;
        LL ans = solve(b,d) - solve(a,d) - solve(c,b) + solve(a,c);
        printf("%lld\n",ans);
    }
    return 0;
}


发布了179 篇原创文章 · 获赞 74 · 访问量 14万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览