Attention
请叫我算术嘉
快手HDFS
展开
-
使用Tensorflow2.x实现基于LSTM+Attention的时间序列预测
数据集纳斯达克100模型原理模型代码class Attention(Layer): def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.suppor原创 2020-12-13 21:58:26 · 12780 阅读 · 14 评论 -
Seq2Seq中的Attention详解
Encoder-Decoder(Seq2Seq)Encoder-Decoder结构先将输入数据编码成一个上下文向量ccc把Encoder的最后一个隐状态赋值给ccc,还可以对最后的隐状态做一个变换得到ccc,也可以对所有的隐状态做变换拿到c之后,就用另一个RNN网络对其进行解码(Decoder),将c当做之前的初始状态h0h_{0}h0输入到Decoder中还有一种做法是将ccc当做...原创 2020-01-01 23:18:10 · 7014 阅读 · 0 评论 -
Seq2seq模型及注意力机制模型
对于处理输出序列为不定长情况的问题,例如机器翻译,例如英文到法语的句子翻译,输入和输出均为不定长。前人提出了seq2seq模型,basic idea是设计一个encoder与decoder,其中encoder将输入序列编码为一个包含输入序列所有信息的context vector $ c ,decoder通过对,decoder通过对,decoder通过对 c $的解码获得输入序列的信息,从而得到输出...原创 2019-12-22 23:23:30 · 8322 阅读 · 0 评论