
期望
SSL_GYX
座右铭:言念君子,温其如玉。
展开
-
【51nod】3145 扔球游戏
扔球游戏Link解题思路考虑每一位上的期望为:nn+m×mn+m−1\frac{n}{n+m}\times\frac{m}{n+m-1}n+mn×n+m−1m ,一共有 n+m−1n+m-1n+m−1 位,所以 ans=nmn+mans=\frac{nm}{n+m}ans=n+mnm 。code#include<iostream>#include<cstdio>using namespace std;int n,m;int gcd(int x,int原创 2022-05-04 08:52:29 · 1057 阅读 · 1 评论 -
【51nod】1632 B君的连通
B君的连通Link题目大意B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接。A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后,剩下联通块的个数的期望是多少?解题思路因为这是一棵树,所以每炸断一条路就会多一个连通块,所以期望为12(n−1)+1\frac{1}{2}(n-1)+121(n−1)+1 ,再乘上2n−12^{n-1}2n−1 即可。code#include<iostrea原创 2022-05-04 08:36:22 · 262 阅读 · 0 评论 -
【51nod】1639 绑鞋带
绑鞋带Link题目描述有n根鞋带混在一起,现在重复n次以下操作:随机抽出两个鞋带头,把它们绑在一起。可以想象,这n次之后將不再有单独的鞋带头,n条鞋带系成了一些环。那么有多大概率刚好所有这些鞋带只形成了一个环?解题思路code#include<iostream>#include<cstdio>using namespace std;int n;double ans=1;int main(){ cin>>n; for(int i=2*n-原创 2022-05-03 21:20:26 · 292 阅读 · 0 评论 -
【51nod】1381 硬币游戏
硬币游戏Link解题思路所有情况都可以平移为与平行线相切的情况,则期望为 2n2n2n 。若硬币上下都与平行线相切,那么期望为 2n+12n+12n+1 。但是相切的情况概率太小,所以忽略不计。所以期望为 2n2n2n 。code#include<iostream>#include<cstdio>using namespace std;int T;int r;int main(){ cin>>T; while(T--) { s原创 2022-05-03 20:27:23 · 973 阅读 · 0 评论