SSL2895 购买干草


原题链接

外网进不去

题目大意

n n n种干草,每种干草都有他们对应的价钱和质量。给出这 n n n种干草的价钱和质量,求出买够 m m m质量的干草至少需要多少钱。
S a m p l e \mathbf{Sample} Sample I n p u t \mathbf{Input} Input

2 15 
3 2 
5 3 

S a m p l e \mathbf{Sample} Sample O u t p u t \mathbf{Output} Output

9

H i n t & E x p l a i n \mathbf{Hint\&Explain} Hint&Explain
3 3 3个第 2 2 2种干草,重量为5*3=15,价值为3*3=9

解题思路

如果求的是最大钱数,那么这题就是一个裸的完全背包,但是他求的是最小价值,所以要加一个初始化,把初始时所有的最小价格设成一个最大值,作者这里用的是 0 x 7 f 7 f 7 f 7 f \mathbf{0x7f7f7f7f} 0x7f7f7f7f,然后把 d p 0 dp_0 dp0设为 0 0 0,因为你不用取就可以达到 0 0 0个单位。
虽说初始化做好了,但是你加上初始化交上去,你肯定会
请添加图片描述
,因为有一些极端的数据就会卡死你,如下面的数据:
I n p u t \mathbf{Input} Input

3 100
100 1000
101 2000
1000 1

O u t p u t \mathbf{Output} Output

1

由于他有一个非常大的干草数,但是价格又非常便宜(是不是假的干草),你的程序就必须要选到他,即把容量放大,加一个额外的容量 e x t r a extra extra,我这里设他为 5001 5001 5001
现在就可以放出状态转移方程了。
d p j dp_j dpj为要取 j j j个单位的干草最少需要多少钱, w i w_i wi为第 i i i种干草的质量, c i c_i ci为第 i i i种干草的价钱,而 e x t r a extra extra的定义如上。
d p j = { d p j 1 ≤ i ≤ n , 0 ≤ j < w i m i n ( d p j , d p j − w i + c i ) 1 ≤ i ≤ n , w i ≤ j ≤ m + e x t r a dp_j=\begin{cases} dp_j&1\le i\le n,0\le j<w_i \\min(dp_j,dp_{j-w_i}+c_i)&1\le i\le n,w_i\le j\le m+extra \end{cases} dpj={dpjmin(dpj,dpjwi+ci)1in,0j<wi1in,wijm+extra
答案就是:
min ⁡ m ≤ i ≤ m + e x t r a d p j \min_{m\le i\le m+extra}dp_j mim+extramindpj
加上了 e x t r a extra extra交上去后,你就会
请添加图片描述
了。

上代码

#include<iostream>
#include<cstring>
using namespace std;

int n,m;
int w[1010],c[1010];
int dp[60000];

int main()
{
    memset(dp,0x7f,sizeof(dp));
	dp[0]=0;
    int extra=5001;
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>w[i]>>c[i];
    // for(int i=1; i<=m; i++) dp[1][i]=((i-1)/w[1]+1)*c[1];
    for(int i=1; i<=n; i++)
    {
        for(int j=w[i]; j<=m+extra; j++)
        {
            dp[j]=std::min(dp[j],dp[j-w[i]]+c[i]);
        }
    }
    int ans=0x7f7f7f80;
    for(int i=m; i<=m+extra; i++) ans=std::min(ans,dp[i]);
    cout<<ans<<endl;
    return 0;
}

完美切题 ∼ \sim

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值