【CSP-S 2019】【洛谷P5658】括号树【dfs】【二分】

21 篇文章 0 订阅

前言

感觉提高不是很稳啊。
这道题也就勉强算在承受范围内吧。考场应该是写出了正解的。
洛谷自测上是满分。希望不要出什么差错吧。。。


题目:

题目链接:https://www.luogu.org/problem/P5658?contestId=24103

本题中合法括号串的定义如下:

  1. () 是合法括号串。
  2. 如果 A 是合法括号串,则 (A) 是合法括号串。
  3. 如果 AB 是合法括号串,则 AB 是合法括号串。

本题中子串不同的子串的定义如下:
4. 字符串 S 的子串是 S连续的任意个字符组成的字符串。S 的子串可用起始位置 l l l 与终止位置 r r r 来表示,记为 S ( l , r ) S (l, r) S(l,r) 1 ≤ l ≤ r ≤ ∣ S ∣ 1 \leq l \leq r \leq |S | 1lrS ∣ S ∣ |S | S 表示 S 的长度)。
5. S 的两个子串视作不同当且仅当它们在 S 中的位置不同,即 l l l 不同或 r r r 不同。

一个大小为 n n n 的树包含 n n n 个结点和 n − 1 n − 1 n1 条边,每条边连接两个结点,且任意两个结点间有且仅有一条简单路径互相可达。

小 Q 是一个充满好奇心的小朋友,有一天他在上学的路上碰见了一个大小为 n n n 的树,树上结点从 1 1 1 n n n 编号, 1 1 1 号结点为树的根。除 1 1 1 号结点外,每个结点有一个父亲结点, u u u 2 ≤ u ≤ n 2 \leq u \leq n 2un)号结点的父亲为 f u f_u fu 1 ≤ f u < u 1 ≤ f_u < u 1fu<u)号结点。

小 Q 发现这个树的每个结点上恰有一个括号,可能是()。小 Q 定义 s i s_i si 为:将根结点到 i i i 号结点的简单路径上的括号,按结点经过顺序依次排列组成的字符串。

显然 s i s_i si 是个括号串,但不一定是合法括号串,因此现在小 Q 想对所有的 i i i 1 ≤ i ≤ n 1\leq i\leq n 1in)求出, s i s_i si 中有多少个互不相同的子串合法括号串

这个问题难倒了小 Q,他只好向你求助。设 s i s_i si 共有 k i k_i ki 个不同子串是合法括号串, 你只需要告诉小 Q 所有 i × k i i \times k_i i×ki 的异或和,即:
( 1 × k 1 )  xor  ( 2 × k 2 )  xor  ( 3 × k 3 )  xor  ⋯  xor  ( n × k n ) (1 \times k_1)\ \text{xor}\ (2 \times k_2)\ \text{xor}\ (3 \times k_3)\ \text{xor}\ \cdots\ \text{xor}\ (n \times k_n) (1×k1) xor (2×k2) xor (3×k3) xor  xor (n×kn)
其中 x o r xor xor 是位异或运算。


思路:

我们设 a n s [ x ] ans[x] ans[x]表示路径 ( 1 , x ) (1,x) (1,x)中构成的括号串,以 x x x节点为右端点的所有区间有多少个合法括号串。

  • 那么如果 x x x位置为(,那么显然 a n s [ x ] = 0 ans[x]=0 ans[x]=0
  • 如果 x x x位置为),设 c n t [ x ] [ 1 / 2 ] cnt[x][1/2] cnt[x][1/2]为路径 ( 1 , x ) (1,x) (1,x)中左括号和右括号的个数,那么一个 x x x节点的祖先 y y y可以对 a n s [ x ] ans[x] ans[x]做贡献,当且仅当满足一下两个条件:
    ( 1 )   c n t [ x ] [ 1 ] − c n t [ y ] [ 1 ] = c n t [ x ] [ 2 ] − c n t [ y ] [ 2 ] (1)\ cnt[x][1]-cnt[y][1]=cnt[x][2]-cnt[y][2] (1) cnt[x][1]cnt[y][1]=cnt[x][2]cnt[y][2]
    ( 2 )   ∀ p ∈ ( y , x ) (2)\ ∀p\in(y,x) (2) p(y,x),满足 c n t [ p ] [ 2 ] ≥ c n t [ p ] [ 1 ] cnt[p][2]\geq cnt[p][1] cnt[p][2]cnt[p][1]

那么我们就可以在访问每一个节点时,依次枚举它的每一个祖先,如果满足 c n t [ x ] [ 1 ] − c n t [ y ] [ 1 ] = c n t [ x ] [ 2 ] − c n t [ y ] [ 2 ] cnt[x][1]-cnt[y][1]=cnt[x][2]-cnt[y][2] cnt[x][1]cnt[y][1]=cnt[x][2]cnt[y][2],那么 a n s [ x ] + + ans[x]++ ans[x]++。直到 c n t [ y ] [ 2 ] < c n t [ y ] [ 1 ] cnt[y][2]< cnt[y][1] cnt[y][2]<cnt[y][1]时停止枚举。
这样我们就得到了一个 O ( n 2 ) O(n^2) O(n2)的算法,获得了 50 p t s 50pts 50pts的好成绩。
我们发现,其实我们只关心在路径 ( 1 , x ) (1,x) (1,x)中,深度最大的不满足 c n t [ p ] [ 2 ] ≥ c n t [ p ] [ 1 ] cnt[p][2]\geq cnt[p][1] cnt[p][2]cnt[p][1]的节点 p p p是哪一个。这样所有在路径 ( s o n [ p ] , x ) (son[p],x) (son[p],x)中满足条件 ( 1 ) (1) (1)的点都可以做贡献。

其实 ( 1 ) (1) (1)的条件可以转化为 c n t [ x ] [ 1 ] − c n t [ x ] [ 2 ] = c n t [ y ] [ 1 ] − c n t [ y ] [ 2 ] cnt[x][1]-cnt[x][2]=cnt[y][1]-cnt[y][2] cnt[x][1]cnt[x][2]=cnt[y][1]cnt[y][2]。所以我们可以用 p o s [ s ] [ t o t ] pos[s][tot] pos[s][tot]记录 c n t [ y ] [ 1 ] − c n t [ y ] [ 2 ] = s cnt[y][1]-cnt[y][2]=s cnt[y][1]cnt[y][2]=s的每一个 x x x的祖先 y y y编号。这样如果 c n t [ x ] [ 1 ] − c n t [ x ] [ 2 ] = s cnt[x][1]-cnt[x][2]=s cnt[x][1]cnt[x][2]=s,那么能对 x x x做贡献的点就都在 p o s [ s ] pos[s] pos[s]中。
那么我们可以用一个栈来记录 c n t [ p ] [ 2 ] < c n t [ p ] [ 1 ] cnt[p][2]<cnt[p][1] cnt[p][2]<cnt[p][1]的所有 p p p。其中 p p p x x x的祖先。此时如果节点 x x x(,那么直接将 x x x扔进栈里。如果 x x x),那么就弹出栈顶。
这样如果栈顶是 p p p,那么能对 x x x做贡献的就是同时在路径 ( s o n [ p ] , x ) (son[p],x) (son[p],x) p o s [ c n t [ x ] [ 1 ] − c n t [ x ] [ 2 ] pos[cnt[x][1]-cnt[x][2] pos[cnt[x][1]cnt[x][2]的节点。
所以就可以二分出 a n s [ x ] ans[x] ans[x]
发现 p o s pos pos中最多只会有 n n n个元素,所以可以开一个 v e c t o r vector vector
求出 a n s [ x ] ans[x] ans[x]后,路径 ( 1 , x ) (1,x) (1,x)的合法括号串个数就是 ∑ y y 是 x 的祖先 a n s [ y ] \sum^{y\texttt{是}x\texttt{的祖先}}_{y}ans[y] yyx的祖先ans[y]。做前缀和即可。
注意回溯时需要在栈中弹出 x x x
时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)


代码:

#include <stack>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;

const int N=500010,Inf=1e9;
int n,tot,a[N],cnt[N][3],head[N];
ll ans[N],orz;
char ch;
vector<int> pos[N*2];
stack<int> del;

struct edge
{
	int next,to;
}e[N];

void add(int from,int to)
{
	e[++tot].to=to;
	e[tot].next=head[from];
	head[from]=tot;
}

int binary(int x,int tp)
{
	int l=0,r=pos[x].size(),mid,res;
//	for (int i=l;i<r;i++) printf("%d ",pos[x][i]);putchar(10);
	while (l<=r)
	{
		mid=(l+r)>>1;
		if (pos[x][mid]>=tp) r=mid-1,res=mid;
			else l=mid+1;
	}
	return res;
}

void dfs(int x,int fa)
{
	cnt[x][1]=cnt[fa][1]; cnt[x][2]=cnt[fa][2];
	cnt[x][a[x]]++;
	int s=cnt[x][1]-cnt[x][2]+N,pp=-1;
	if (a[x]==1) del.push(x);
	else
	{
		if (del.size()>1)
		{
			pp=del.top();
			del.pop();
		}
		int tp=del.top();
		pos[s].push_back(Inf);
		ans[x]=pos[s].size()-binary(s,tp)-1;
		pos[s].pop_back();
	}
	ans[x]+=ans[fa];
	orz^=1LL*x*ans[x];
	pos[s].push_back(x);
	for (int i=head[x];~i;i=e[i].next)
		dfs(e[i].to,x);
	pos[s].pop_back();
	if (del.top()==x) del.pop();
	if (pp!=-1) del.push(pp);
}

int main()
{
	memset(head,-1,sizeof(head));
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	{
		//while (ch=getchar()) if (ch=='('||ch==')') break;
		while (1)
		{
			ch=getchar();
			if (ch=='('||ch==')') break;
		}
		if (ch=='(') a[i]=1;
			else a[i]=2;
	}
	for (int i=2,x;i<=n;i++)
	{
		scanf("%d",&x);
		add(x,i);
	}
	del.push(-1);pos[N].push_back(0);
	dfs(1,0);
	printf("%lld\n",orz);
//	for (int i=1;i<=n;i++)
//		printf("%lld ",ans[i]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值