关于FM模型的相关知识梳理

前言部分

FM模型其实属于LR模型的升级版,再其基础上增加了二元特征交叉,解决了LR关于特征无关性假设问题。

FM模型的基础表达方式为:

xi是所有的样本数据经过onehot编码后的统一特征表示形式。其中的w0,wi,wij都是模型参数

从公式来看,模型前半部分就是普通的LR线性组合,后半部分的交叉项即特征的组合。其中组合的特征个数为n*(n-1)/2个。由于onehot编码的稀疏性特征,当n达到1000w级别时,对应的模型参数量就是百亿级别;同时由于稀疏性,对于每一个wij对应的xi和xj非零样本过少,容易导致训练的不充分。

二次项参数的训练问题

进而FM模型的表达方式改变为:

计算进一步化简处理如下(图片来源推荐算法(一)——FM因式分解(原理+代码) - 知乎 (zhihu.com)):

化简之后,FM的复杂度从O(kn*n)降到了O(kn)

优缺点比较:

模型代码参考:rec_sys: 总结日常工作中的推荐相关知识代码 (gitee.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会发paper的学渣

您的鼓励和将是我前进的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值