关于FM模型的相关知识梳理

前言部分

FM模型其实属于LR模型的升级版,再其基础上增加了二元特征交叉,解决了LR关于特征无关性假设问题。

FM模型的基础表达方式为:

xi是所有的样本数据经过onehot编码后的统一特征表示形式。其中的w0,wi,wij都是模型参数

从公式来看,模型前半部分就是普通的LR线性组合,后半部分的交叉项即特征的组合。其中组合的特征个数为n*(n-1)/2个。由于onehot编码的稀疏性特征,当n达到1000w级别时,对应的模型参数量就是百亿级别;同时由于稀疏性,对于每一个wij对应的xi和xj非零样本过少,容易导致训练的不充分。

二次项参数的训练问题

进而FM模型的表达方式改变为:

计算进一步化简处理如下(图片来源推荐算法(一)——FM因式分解(原理+代码) - 知乎 (zhihu.com)):

化简之后,FM的复杂度从O(kn*n)降到了O(kn)

优缺点比较:

模型代码参考:rec_sys: 总结日常工作中的推荐相关知识代码 (gitee.com)

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会发paper的学渣

您的鼓励和将是我前进的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值