中国象棋

题目描述

这次小可可想解决的难题和中国象棋有关。在一个 N 行 M 列的棋盘上,让你放若干个炮(可以是 0 个),使得没有任何一个炮可以攻击另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮能攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好有一个棋中。你也来和小可可一起锻炼一下思维吧!

输入

一行包含两个整数 N, M,之间由一个空格隔开。
输出

总共的方案数。由于该值可能很大,只需给出方案数模 9999973 的结果。
输入样例

1 3
输出样例

7
说明

数据范围限制
30% 的数据中 N 和 M 均不超过 6
50% 的数据中 N 和 M 至少有一个数不超过 8
100% 的数据中 N 和 M 不超过 100
提示
【样例说明】
除了在3个格子里都塞满炮以外,其他方案都是可行的。所以一共有 2^3-1=7 种方案。

.
.
.
.
.
.
分析
题目可以转化为,在棋盘放旗子要求每行每列都至多有两个棋子的方案数
f[i][j][k]表示前i行有j列放了1个棋子,有k列放了2个棋子,那么有(列数m-j-k)列放了0个棋子
然后考虑转移
f[i][j][k]的转移要考虑当前列放几枚棋子
1:当前列不放棋子,这时候的方案数和上一列一样
2:当前列放1个棋子 那么就要讨论放到了的那一列原本有几枚棋子
假设那一列没有,则f[i][j][k]从f[i-1][j-1][k] 转移而来,同时有(m-(j-1)-k)种方法,乘法原理
假设那一列有一个,则 f[i][j][k]从f[i-1][j+1][k-1]转移而来同时有j+1种方法乘法原理
3.当前列放两个棋子 那么要讨论放法
假设放到了两个空行 那么从f[i-1][j-2][k]转移而来,同时有C(m-(j-2)-k2)种方法,乘法原理
假设放到了两个有一个棋子的行,那么从 f[i-1][j+2][k-2]转移而来,同时有C(j+2,2)种方法,乘法原理
假设一个放到了空行,一个放到了有一个棋子的行,那么从f[i-1][j][k - 1]转移而来,同时有j*(k-1)种方法,乘法原理
最后统计所有可能的解,相加输出即可

.
.
.
.
.
.
程序:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int n,m;
long long f[101][101][101],mo=9999973;

int main()
{
    scanf("%d%d",&n,&m);
    f[0][0][0]=1;
    for (int i=0;i<n;i++)
	{
    	for (int j=0;j<=m;j++)
		{
        	for (int k=0;k+j<=m;k++)
			{
        		int l=m-j-k;
        		f[i+1][j][k]=(f[i+1][j][k]+f[i][j][k])%mo;
        		if (l>0) f[i+1][j+1][k]=(f[i+1][j+1][k]+f[i][j][k]*l)%mo;
        		if (j>0) f[i+1][j-1][k+1]=(f[i+1][j-1][k+1]+f[i][j][k]*j)%mo;
        		if (l>1) f[i+1][j+2][k]=(f[i+1][j+2][k]+f[i][j][k]*l*(l-1)/2)%mo;
        		if (l>0&&j>0) f[i+1][j][k+1]=(f[i+1][j][k+1]+f[i][j][k]*l*j)%mo;
        		if (j>1) f[i+1][j-2][k+2]=(f[i+1][j-2][k+2]+f[i][j][k]*j*(j-1)/2)%mo;
        	}
    	}
    }
    long long ans=0;
    for (int j=0;j<=m;j++)
	{
    	for (int k=0;k+j<=m;k++)
			ans=(ans+f[n][j][k])%mo;
    }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值