题目描述
给定一个n个点m条边的有向图,有k个标记点,要求从规定的起点按任意顺序经过所有标记点到达规定的终点,问最短的距离是多少。
输入
第一行5个整数n、m、k、s、t,表示点个数、边条数、标记点个数、起点编号、终点编号。
接下来m行每行3个整数x、y、z,表示有一条从x到y的长为z的有向边。
接下来k行每行一个整数表示标记点编号。
输出
输出一个整数,表示最短距离,若没有方案可行输出-1。
输入样例
3 3 2 1 1
1 2 1
2 3 1
3 1 1
2
3
输出样例
3
说明
【样例解释】
路径为1->2->3->1。
Data Constraint
20%的数据n<=10。
50%的数据n<=1000。
另有20%的数据k=0。
100%的数据n<=50000,m<=100000,0<=k<=10,1<=z<=5000。
.
.
.
.
.
.
分析
要先对于每个特殊点和起点终点都求一遍最短路,算出这些点之间的最短路径长度,然后枚举经过特殊点的顺序,就能得出最优答案,注意答案会超int。
.
.
.
.
.
程序:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
int n,m,s,t,K,vis[100005],k[100005];
int head[100005],next[100005],to[100005],val[100005],cnt;
long long minn=100000000000,dis[20][100005];
bool f[11];
queue <int> q;
void add(int x,int y,int v)
{
next[++cnt]=head[x];head[x]=cnt;to[cnt]=y;val[cnt]=v;
}
void spfa(int b,int x)
{
q.push(x);
for (int i=1;i<=n;i++)
dis[b][i]=100000000000;
dis[b][x]=0;
vis[x]=1;
while (!q.empty())
{
int u=q.front();
vis[u]=0;
q.pop();
for (int i=head[u];i;i=next[i])
{
int v=to[i];
if (dis[b][v]>dis[b][u]+val[i])
{
dis[b][v]=dis[b][u]+val[i];
if (!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
}
void dfs(int dep,int p,long long sum)
{
if (dep>K)
{
sum+=dis[p][t];
minn=min(minn,sum);
return;
}
for (int i=1;i<=K;i++)
if (!f[i])
{
f[i]=1;
dfs(dep+1,i,sum+dis[p][k[i]]);
f[i]=0;
}
}
int main()
{
scanf("%d%d%d%d%d",&n,&m,&K,&s,&t);
for (int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
spfa(0,s);
for (int i=1;i<=K;i++)
{
scanf("%d",&k[i]);
spfa(i,k[i]);
}
dfs(1,0,0);
if (minn==100000000000) printf("-1"); else printf("%lld",minn);
return 0;
}

1735

被折叠的 条评论
为什么被折叠?



