ssrob的专栏
私信
关注
ssrob
码龄19年
1
被访问量
暂无
原创文章
暂无
作者排名
5
粉丝数量
于
2001-12-01
加入CSDN
获得成就
获得
0
次点赞
内容获得
0
次评论
获得
58
次收藏
荣誉勋章
所有勋章
最近
文章
资源
问答
课程
帖子
收藏
关注/订阅
scikit-learn用户手册0.21.2版
不知道哪里能设成免费,CSDN的底限阿... scikit-Learn是基于python的机器学习模块,基于BSD开源许可证。这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护。 scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理,具体可以参考官方网站上的文档。 对于具体的机器学习问题,通常可以分为三个步骤,数据准备与预处理,模型选择与训练,模型验证与参数调优。 scikit-learn支持多种格式的数据,包括经典的iris数据,LibSVM格式数据等。
scikit-learn用户手册0.18.2版
scikit-Learn是基于python的机器学习模块,基于BSD开源许可证。这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护。 scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理,具体可以参考官方网站上的文档。 对于具体的机器学习问题,通常可以分为三个步骤,数据准备与预处理,模型选择与训练,模型验证与参数调优。 scikit-learn支持多种格式的数据,包括经典的iris数据,LibSVM格式数据等。
scikit-learn用户手册0.18.1版
scikit-Learn是基于python的机器学习模块,基于BSD开源许可证。这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护。 scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理,具体可以参考官方网站上的文档。 对于具体的机器学习问题,通常可以分为三个步骤,数据准备与预处理,模型选择与训练,模型验证与参数调优。 scikit-learn支持多种格式的数据,包括经典的iris数据,LibSVM格式数据等。
OReilly Hands On Machine Learning with Scikit Learn and TensorFlow 英文高清.pdf版
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
scikit-learn用户手册0.17版
scikit-Learn是基于python的机器学习模块,基于BSD开源许可证。这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护。 scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理,具体可以参考官方网站上的文档。 对于具体的机器学习问题,通常可以分为三个步骤,数据准备与预处理,模型选择与训练,模型验证与参数调优。 scikit-learn支持多种格式的数据,包括经典的iris数据,LibSVM格式数据等等。 0.17版本用户手册较0.16.1版本在目录组织上做了较大改变,0.16.1版本在这里:http://download.csdn.net/detail/ssrob/8757217
算法交易与套利交易
转别人的,他们要的分太高,我这里造福群众........
scikit-learn用户手册0.16.1版
Scikit-Learn是基于python的机器学习模块,基于BSD开源许可证。这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护。 scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理,具体可以参考官方网站上的文档。 对于具体的机器学习问题,通常可以分为三个步骤,数据准备与预处理,模型选择与训练,模型验证与参数调优。 scikit-learn支持多种格式的数据,包括经典的iris数据,LibSVM格式数据等等。