Algorithm
文章平均质量分 64
ssrs626
这个作者很懒,什么都没留下…
展开
-
关于风险等问题的总结(续)
机器学习(Machine Learning, ML)的目的是根据给定的训练样本求对某系统输入输出之间依赖关系的估计,使它(这种关系)能够对未知输出做出尽可能准确地预测。机器学习至今没有一个精确的公认的定义。作为人工智能(Artificial Intelligence, AI)的一个重要研究领域,ML的研究工作主要围绕学习机理、学习方法和面向任务这三个基本方面进行研究。模式识别、函数逼近和概率密度估原创 2008-10-29 14:27:00 · 842 阅读 · 0 评论 -
结构风险最小化
结构风险最小化(SRM) VC 维在有限的训练样本情况下,当样本数 n 固定时,此时学习机器的 VC 维越高学习机器的复杂性越高。VC 维反映了函数集的学习能力,VC 维越大则学习机器越复杂(容量越大)。 所谓的结构风险最小化就是在保证分类精度(经验风险)的同时,降低学习机器的 VC 维,可以使学习机器在整个样本集上的期望风险得到控制。 推广的界(经验风险和实际原创 2008-10-29 15:08:00 · 3279 阅读 · 3 评论 -
关于LINDO/LINGO的学习材料
关于LINDO/LINGO的学习材料1、LINDO这个就是一开始的那个软件,主要求解线性规划、整数规划、二次规划问题。现在版本好像是6.1。2、GINO一开始的时候这也是一个求非线性规划的工具,甚至她还用来求解一些非线性的方程根。它的特点是:包含了丰富的数学函数,尤其是概率函数!但是随着像Mathematica/Matlab的迅速发展,他逐渐的消亡,并演化为现在的函数引擎LINDO原创 2008-11-06 16:46:00 · 3788 阅读 · 0 评论 -
libsvm使用(续)
libsvm使用LIBSVM 软件包简介LIBSVM 是台湾大学林智仁 (Chih-Jen Lin) 博士等开发设计的一个操作简单、易于使用、快速有效的通用 SVM 软件包,可以解决分类问题(包括 C- SVC 、n - SVC )、回归问题(包括 e - SVR 、 n - SVR )以及分布估计( one-class-SVM )等问题,提供了线性、多项式、径向基和 S 形函数四原创 2008-11-08 22:06:00 · 8915 阅读 · 39 评论 -
libsvm的FQA
这里是libsvm的FQA : 我研究了好久才发现有这么个好东西的:转别人的 问: 我在那里能够找到libsvm的文件 ? 软件包中有一个 README 文件,里面详细说明了所有参数选项、数据格式以及库函数的调用。在python目录下,模型选择工具和python界面的libsvm各有一个README文件。 初学者可以通过A practical guide to support vect转载 2008-11-09 20:54:00 · 3691 阅读 · 5 评论 -
libsvm.NET的使用(续)
目前主要有两种.NET版本的svm: libsvm.NET 和svm.NET还要努力啊libsvm是著名的SVM开源组件,目前有JAVA.C/C++,.NET 等多个版本,本人使用的是2.82libsvm命名空间下主要使用类:svm_model 为模型类,通过训练或加载训练好的模型文件获得svm_parameter 为参数类,主要为支持向量机设定参数,具体参数如下:svm_parameter.原创 2008-11-24 16:08:00 · 2121 阅读 · 0 评论 -
malab中支持向量机使用
1,下载SVM工具箱:http://see.xidian.edu.cn/faculty/chzheng/bishe/indexfiles/indexl.htm2,安装到matlab文件夹中 1)将下载的SVM工具箱的文件夹放在/matlab71/toolbox/下 2)打开matlab->File->Set Path中添加SVM工具箱的文件夹 现在,就成功的添加成功了.原创 2009-02-19 10:02:00 · 1336 阅读 · 0 评论 -
A* Algorithm( GO ON)
A*算法在人工智能中是一种典型的启发式搜索算法,为了说清楚A*算法,我看还是先说说何谓启发式算法。何谓启发式搜索算法 在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦)。由于求解问题的过程中分枝有很多,主要是求解过程中求解条原创 2009-05-12 15:11:00 · 865 阅读 · 0 评论