『数据结构』红黑树

什么是红黑树?

红黑树(Red Black Tree)是一种自平衡二叉搜索树,但在每个节点上增加了一个存储位表示结点的颜色,可以是Red或Black通过对任意一条从根到叶子路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是近似平衡的。
它是在1972年有Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被Leo.J.Guibas和Robert Sedgewick修改为如今的“红黑树”
红黑树和AVL树类似,都是在进行插入和删除操作时通过一定的操作保持二叉搜索树的平衡,从而获得比较高的查找特性
在这里插入图片描述

红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个结点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代结点的简单路径上,均包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空节点)。

红黑树是如何保证最长路径不超过最短路径的两倍的

  • 最短路径为全黑结点
  • 最长路径为黑红交替

红黑结点的定义

// 结点的颜色
enum Color{
	RED, BLACK
};

// 红黑树结点
template<class K, class V>
struct RBTreeNode{

	RBTreeNode(const pair<K, V>& kv, Color color = RED)
		: _parent(nullptr)
		, _left(nullptr)
		, _right(nullptr)
		, _kv(kv)
		, _color(color)
	{}

	// 结点的双亲
	RBTreeNode<K, V>* _parent;
	// 结点的左孩子
	RBTreeNode<K, V>* _left;
	// 结点的右孩子
	RBTreeNode<K, V>* _right;
	pair<K, V> _kv;
	// 结点的颜色
	Color _color;

};

红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可以分为两步
首先,按照二叉搜索树的规则插入新节点

// 二叉搜索树的插入
bool insert(const pair<K, V>& kv){
	// 空树
	if (_root == nullptr){
		_root = new Node(kv);

		return true;
	}

	// 树不为空
	Node* cur = _root;
	// 保存双亲
	Node* parent = nullptr;

	while (cur != nullptr){
		parent = cur;

		// 比当前结点大,去右树找
		if (kv.first > cur->_kv.first){
			cur = cur->_right;
		}
		// 比当前结点小,去左树找
		else if (kv.first < cur->_kv.first){
			cur = cur->_left;
		}
		// 相等,已经存在,插入失败
		else{
			return false;
		}
	}

	// 结点创建
	cur = new Node(kv);

	// 新创建的结点指向其双亲结点
	cur->_parent = parent;

	// 比双亲大,在双亲的右树
	if (kv.first > parent->_kv.first){
		parent->_right = cur;
	}
	// 比双亲小,在双亲的左树
	else{
		parent->_left = cur;
	}

	return true;
}

其次,检测新节点插入后,红黑树的性质是否遭到破坏
因为新节点的颜色默认是红色,因此:如果双亲结点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入结点的双亲结点颜色为红色时,就违反了性质三不能有连在一起的红色结点此时需要对红黑树分情况来讨论
约定:cur为当前结点,p为父结点,g为祖父结点,u为叔叔结点

  • 情况一cur为红,p为红,g为黑,u存在且为红
    在这里插入图片描述
    解决方案将p,u改为黑,g改为红,然后把g当成cur,继续向上调整
  • 情况二cur为红,p为红,g为黑,u不存在/u为黑
    在这里插入图片描述
    解决方案
    p为g的左孩子,cur为p的左孩子,则进行右单旋
    p为g的右孩子,cur为p的右孩子,则进行左单旋
    p变黑,g变红
  • 情况三cur为红,p为红,g为黑,u不存在/u为黑
    在这里插入图片描述
    解决方案
    p为g的左孩子,cur为p的右孩子,针对p做左单旋
    p为g的右孩子,cur为p的左孩子,针对p做右单旋
    就将情况三转化成了情况二
// 红黑树的插入
bool insert(const pair<K, V>& kv){
	// 空树
	if (_root == nullptr){
		_root = new Node(kv);

		return true;
	}

	// 树不为空
	Node* cur = _root;
	// 保存双亲
	Node* parent = nullptr;

	while (cur != nullptr){
		parent = cur;

		// 比当前结点大,去右树找
		if (kv.first > cur->_kv.first){
			cur = cur->_right;
		}
		// 比当前结点小,去左树找
		else if (kv.first < cur->_kv.first){
			cur = cur->_left;
		}
		// 相等,已经存在,插入失败
		else{
			return false;
		}
	}

	// 结点创建
	cur = new Node(kv);

	// 新创建的结点指向其双亲结点
	cur->_parent = parent;

	// 比双亲大,在双亲的右树
	if (kv.first > parent->_kv.first){
		parent->_right = cur;
	}
	// 比双亲小,在双亲的左树
	else{
		parent->_left = cur;
	}

	// 父亲为黑色不违反规则,不需要调整
	// 父亲存在并且为红色
	while (parent && parent->_color == RED){
		// 祖父结点
		Node* grandparent = parent->_parent;
		// 如果父亲是祖父的左
		if (parent == grandparent->_left){
			// 叔叔结点
			Node* uncle = grandparent->_right;

			// 情况一:叔叔存在且为红
			if (uncle != nullptr && uncle->_color == RED){
				// 父亲和叔叔涂成黑,祖父涂成红
				parent->_color = BLACK;
				uncle->_color = BLACK;
				grandparent->_color = RED;

				// 祖父赋给cur,继续向上调整
				cur = grandparent;
				parent = parent->_parent;
			}
			// 情况二/三:叔叔不存在或者存在且为黑
			else{
				// 先处理情况三,将情况三转化为情况二
				if (cur = parent->_right){
					// 左单旋
					leftRotate(parent);

					// 交换parent和cur
					swap(parent, cur);
				}

				// 情况二:叔叔不存在或者存在且为黑
				// 右单旋
				rightRotate(grandparent);

				parent->_color = BLACK;
				grandparent->_color = RED;

				break;
			}
		}
		// 父亲是祖父的右
		else{
			// 叔叔结点是祖父结点的左
			Node* uncle = grandparent->_left;

			// 情况一:叔叔存在且为红
			if (uncle != nullptr && uncle->_color == RED){
				// 父亲,叔叔涂成黑色,祖父涂成红色
				parent->_color = BLACK;
				uncle->_color = BLACK;
				grandparent->_color = RED;

				// 将祖父赋给cur,继续向上调整
				cur = grandparent;
				parent = cur->_parent;
			}
			// 情况二/三:叔叔不存在/叔叔存在且为黑
			else{
				// 先处理情况三,将情况三转化为情况二
				if (cur = parent->_left){
					// 右单旋
					rightRotate(parent);

					// 交换parent和cur
					swap(parent, cur);
				}

				// 情况二:叔叔不存在/叔叔存在且为黑
				leftRotate(grandparent);

				// 父亲涂黑,祖父涂红
				parent->_color = BLACK;
				grandparent->_color = RED;

				break;
			}
		}
	}

	// 根节点涂黑
	_root->_color = BLACK;

	return true;
}

中间用到的树的旋转可以参考AVL树中的讲解
AVL树

红黑树的验证

红黑树的验证分为两步
首先,检测其是否满足二叉搜索树(中序遍历是否为有序序列)

// 中序
void _inorder(Node* root){
	_inorder(root->_left);
	cout << root->_kv.first << " ";
	_inorder(root->_right);
}

// 中序遍历
void inorder(){
	_inOrder(_root);
	cout << endl;
}

其次,检测其是否满足红黑树的性质

// 是不是红黑树
bool _isRBTree(Node* root, size_t cnt, size_t black_cnt){
	// 走到一条路径的尽头
	if (root == nullptr){
		// 判断黑色结点数是否相同
		if (cnt != black_cnt){
			cout << "违反性质四:每条路径中黑色结点的个数必须相同!" << endl;

			return false;
		}

		return true;
	}

	// 统计当前路径黑色结点数量
	if (root->_color == BLACK){
		++cnt;
	}

	// 检测当前结点与其双亲结点是否都是红色
	Node* parent = root->_parent;
	if (parent != nullptr && parent->_color == RED && root->_color == RED){
		cout << "违反性质三:没有连在一起的红色结点!" << endl;

		return false;
	}

	return _isRBTree(root->_left, cnt, black_cnt) &&
		_isRBTree(root->_right, cnt, black_cnt);
}

// 是不是红黑树
bool isRBTree(){
	Node* root = getRoot();

	// 空树是红黑树
	if (root == nullptr){
		return true;
	}

	// 检测根节点是否为黑色
	if (root->_color == BLACK){
		cout << "违反性质二:根结点必须为黑色!" << endl;

		return false;
	}

	// 获取任意一条路径的黑结点数量,这里选择最左路径
	size_t black_cnt = 0;
	Node* cur = root;
	while (cur != nullptr){
		if (cur->_color == BLACK){
			++black_cnt;
		}

		cur = cur->_left;
	}

	// 检测是否满足红黑树的性质,cnt用来记录路径中黑色结点的数量
	size_t cnt = 0;

	return _isRBTree(root, cnt, black_cnt);
}

红黑树和AVL树的比较

  • 红黑树不追求“完全平衡”,即不像AVL那样要求结点的|bf| <= 1,它只要求部分达到平衡,但是提出了为结点增加颜色,红黑是用非严格的平衡来换取增删结点时候旋转次数的降低任何不平衡都会在三次旋转之内解决,而AVL是严格平衡树,因此在增加或者删除结点的时候,根据不同情况,旋转的次数比红黑树更多。
  • 插入结点导致树失衡的情况,AVL和RBTree都是最多两次旋转来实现复衡,旋转的量级为O(1)删除结点导致失衡,AVL树需要维护从被删除结点到根节点这条路径上所有结点的平衡,旋转的量级为O(log2(N)),而RBTree最多只需要旋转三次实现复衡,只需要O(1),所以说RBTree删除结点后复衡的效率更高,开销更小
  • AVL结构相较于RBTree更为平衡,插入和删除引起失衡,RBTree复衡效率更高;当然,由于AVL高度平衡,因此AVL的搜索效率更高
  • 针对插入和结点导致失衡后的复衡操作,红黑树能够提供一个比较便宜的解决方案,降低开销,是对查找、插入以及删除效率的折中,总体来说,RBTree的统计性能高于AVL。
  • 实际应用中,若搜索的次数远远大于插入和删除,那么选择AVL,如果搜索,插入删除次数几乎差不多,应该选择RB
  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
红黑树是一种自平衡的二叉查找树,它在插入和删除节点时能够保持树的平衡。红黑树的概念可以参考。在Java中实现红黑树,可以按照以下步骤进行: 1. 首先将红黑树当作一颗二叉查找树,将新节点插入到适当的位置上。 2. 将插入的节点着色为"红色"。 3. 根据红黑树的特性,通过一系列的旋转和着色等操作,使树重新保持红黑树的性质。 具体的插入过程可以参考中提供的代码。在代码中,使用了左旋转、右旋转和颜色翻转等操作来重新平衡红黑树。 首先,如果节点的右子树是红色而左子树是黑色,可以通过左旋转操作将其变为左子树为红色,右子树为黑色的情况。 其次,如果节点的左子树和左子树的左子树都是红色,可以通过右旋转操作将其修正为上述情况。 最后,如果节点的左子树和右子树都是红色,可以通过颜色翻转操作将其修正为左子树和右子树都为黑色的情况。 在插入完节点后,需要将根节点的颜色设置为黑色,以确保红黑树的性质满足。 这样,通过以上的步骤,就能够实现对红黑树的插入操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Java数据结构红黑树的真正理解](https://download.csdn.net/download/weixin_38622475/12770272)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Java高阶数据结构红黑树](https://blog.csdn.net/qq15035899256/article/details/126678970)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Java数据结构——红黑树](https://blog.csdn.net/weixin_30699463/article/details/95256212)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值