题目描述:
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入: [ [1,3,1], [1,5,1], [4,2,1] ] 输出: 7 解释: 因为路径 1→3→1→1→1 的总和最小。
思考:动态规划,求递归关系为ret[0][0]=grid[0][0];res[0][j]=res[0][j-1]+grid[0][j];res[i][0]=res[i-1][0]+grid[i][0];
res[i][j]=min{res[i-1][j],res[i][j-1]}+grid[i][j];
代码:
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m=grid.size();
int n=grid[0].size();
if(m*n==1) return grid[0][0];
if(m*n<=2) return (grid[0][0]+grid[m-1][n-1]);
for(int i=0;i<m;i++)
for(int j=0;j<n;j++)
{
if(i==0&&j==0) continue;
else if(i==0) grid[i][j]+=grid[i][j-1];
else if(j==0) grid[i][j]+=grid[i-1][j];
else
{if(grid[i-1][j]<grid[i][j-1]) grid[i][j]+=grid[i-1][j];
else grid[i][j]+=grid[i][j-1];}
}
return grid[m-1][n-1];
}
};