NOIP2016普及组第四题魔法阵解说+水法





	其实呢,这道题大部分是思路,对于信息学的代码啊、算法啊,并没有特别高的要求。
	看到题目数据,便大吃一惊:数据里的水分呢???暴搜和水法肯定是不能AC的了。不过,“数据就像海绵,只要挤,总是有水的。”事实证明,“水法真神奇,暴力出奇迹”同样适用于这道题目。4重循环,时间O(n4)也是可以水到过半的分的。然而,顿时又通过b-a=2(d-c)这个等式,可以在已知a,b,c的情况下直接求出d。时间O(n3),拿到75分不是问题。接着,通过b-a<(c-b)/3和b-a=2(d-c)这两个式子解方程/不等式可以发现(b-a)是偶数、c>b*4-3*a等取值范围,这样可以拿到80~85分。
       接着,正解:
       通过b-a<(c-b)/3和b-a=2(d-c)这两个式子解方程/不等式得出,a,b,c,d之间的关系图(d-c=i)(k>0):

           2i                  >6i(6i+k)               i 
___|______|___________________|___|___
     a           b                                     c     d
    (a)      (a+2i)                         (a+8i+k) (a+9i+k)
       这时候,就可以依次枚举i,a,k三个数以得出结果,时间O((n div 9)*(n-9i-1)*(n-i*9)。然并卵,这样还是会超时。所以可以加点优化。
       不难发现,每一次枚举i中会重复多次求可能的,k的方案数,而c,d就是目标(a+8i+k和a+9i+k),所以,我们可以在每一次枚举i的起始位置,先求出c的取值范围在i~j之间的c,d取法数。然而这样会爆空间,所以,我们就用w[i]表示c的取值范围在i~n之间的c,d取法数。则w[i]-w[j+1]表示c的取值范围在i~j之间的c,d取法数。而w数组就是后缀和,再用相对的方法将s数组中存a的前缀和。
       当你完成这一切时,你就可以利用前后缀和将程序活生生压成for i中四个for j的四重循环了打上输入输出,AC和同学们在前方等着你!!!

补充:对于不会优化、不会三重循环、甚至暴力都不会的蒟蒻们,我也很人性化的给你们发福利了!!!看好了,现在我要从裤兜里掏出一个几乎每道题目都适用的超级算法——水法!!!(提醒:这只是一个85分的程序,不要想多了,怎么可能有可以ACNOIP普及组第四题的水法!)
var
        a,b,c,d,n,m,i,j:longint;
        s:array [1..15000,1..4] of longint;//答案
        bj:array [1..15000] of longint;//每个数出现的次数
        t:array [1..40000] of longint;//储存输入的N个数
begin
        assign(input,'magic.in'); reset(input);
        assign(output,'magic.out'); rewrite(output);
        readln(n,m); n:=0;
        for i:=1 to m do
        begin
                readln(t[i]);
                inc(bj[t[i]]);
                if t[i]>n then n:=t[i];
        end;//输入
        for a:=1 to n do
        if bj[a]>0 then begin
                b:=a+2;
                while b<=n do
                begin
                if bj[b]>0 then begin
                        for c:=4*b-3*a+1 to n do //由公式得出
                        if bj[c]>0 then begin
                                d:=c+(b-a) div 2;//三重循环枚举
                                if bj[d]>0 then begin
                                        inc(s[a,1],bj[b]*bj[c]*bj[d]);
                                        inc(s[b,2],bj[a]*bj[c]*bj[d]);
                                        inc(s[c,3],bj[a]*bj[b]*bj[d]);
                                        inc(s[d,4],bj[a]*bj[b]*bj[c]);//更新答案
                                end;
                        end;
                end;
                inc(b,2);
                end;
        end;
        for i:=1 to m do
        begin
                for j:=1 to 4 do
                begin
                        write(s[t[i],j],' ');
                end;
                writeln;
        end;//输出
        close(input); close(output);
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值