2i >6i(6i+k) i ___|______|___________________|___|___ a b c d (a) (a+2i) (a+8i+k) (a+9i+k) 这时候,就可以依次枚举i,a,k三个数以得出结果,时间O((n div 9)*(n-9i-1)*(n-i*9)。然并卵,这样还是会超时。所以可以加点优化。 不难发现,每一次枚举i中会重复多次求可能的,k的方案数,而c,d就是目标(a+8i+k和a+9i+k),所以,我们可以在每一次枚举i的起始位置,先求出c的取值范围在i~j之间的c,d取法数。然而这样会爆空间,所以,我们就用w[i]表示c的取值范围在i~n之间的c,d取法数。则w[i]-w[j+1]表示c的取值范围在i~j之间的c,d取法数。而w数组就是后缀和,再用相对的方法将s数组中存a的前缀和。 当你完成这一切时,你就可以利用前后缀和将程序活生生压成for i中四个for j的四重循环了打上输入输出,AC和同学们在前方等着你!!!
var
a,b,c,d,n,m,i,j:longint;
s:array [1..15000,1..4] of longint;//答案
bj:array [1..15000] of longint;//每个数出现的次数
t:array [1..40000] of longint;//储存输入的N个数
begin
assign(input,'magic.in'); reset(input);
assign(output,'magic.out'); rewrite(output);
readln(n,m); n:=0;
for i:=1to m dobegin
readln(t[i]);
inc(bj[t[i]]);
if t[i]>n then n:=t[i];
end;//输入
for a:=1to n doif bj[a]>0thenbegin
b:=a+2;
while b<=n dobeginif bj[b]>0thenbeginfor c:=4*b-3*a+1to n do //由公式得出if bj[c]>0thenbegin
d:=c+(b-a) div2;//三重循环枚举
if bj[d]>0thenbegin
inc(s[a,1],bj[b]*bj[c]*bj[d]);
inc(s[b,2],bj[a]*bj[c]*bj[d]);
inc(s[c,3],bj[a]*bj[b]*bj[d]);
inc(s[d,4],bj[a]*bj[b]*bj[c]);//更新答案
end;
end;
end;
inc(b,2);
end;
end;
for i:=1to m dobeginfor j:=1to4dobeginwrite(s[t[i],j],' ');
end;
writeln;
end;//输出
close(input); close(output);
end.