神经网络
文章平均质量分 54
SSSevenss
这个作者很懒,什么都没留下…
展开
-
遗传算法主函数说明
【代码】遗传算法主函数说明。原创 2023-11-08 16:43:03 · 70 阅读 · 1 评论 -
遗传算法中的交叉
通过这种方法,算术交叉操作将两个父代的信息进行混合,并生成两个子代。这有助于增加多样性,引入新的解决方案,以及加速遗传算法的进化过程。在遗传算法的迭代过程中,这个操作会被应用于一组父代中,以生成一组子代,然后子代将与其他操作(如选择、变异等)结合在一起,以产生下一代的父代。随机混合量的选择:代码通过rand函数生成一个随机数a,这个随机数范围在[0,1]之间。这个随机数将决定如何混合两个父代来生成子代。算术交叉是遗传算法中的一种交叉操作,用于从两个父代(P1和P2)中产生两个子代(C1和C2)。原创 2023-11-08 11:58:54 · 992 阅读 · 1 评论 -
遗传算法非均匀突变
通过调整这些控制参数,可以在遗传算法中有效地管理非均匀突变操作,以在不同阶段引入不同程度的随机性,以便更好地平衡多样性和收敛性,从而提高算法的性能并找到更好的解决方案。:有时非均匀突变的变异幅度会根据进化代数的增加而减小。在开始阶段,较大的变异幅度有助于跳出当前的局部最优解,而在进化的后期,较小的变异幅度有助于细化解空间,逐渐接近全局最优解。总之,非均匀突变是一种有助于提高遗传算法性能的策略,通过逐渐减小变异幅度,它能够在搜索空间中平衡多样性和收敛性,从而更好地找到全局最优解或更好的解决方案。原创 2023-11-08 11:56:09 · 386 阅读 · 1 评论