hdu1573 X问题 中国剩余定理


题意:给出两个数 N,M,再给出M个除数NUM[],再给出对应的M个余数REMAIN[] 。

求在区间[1,N]内有多少个数满足所有情况。


除了应用扩展欧几里德和中国剩余定理,要注意的是可以将M个除数变成两个除数,然后更新除数和余数。

代码如下:


//============================================================================
// Name        : hdu1573.cpp
// Author      : ssslpk
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================



#include <iostream>
#include<cstdio>
#include<cmath>
using namespace std;

#define FOR(i,s,m) for(int i=s;i<m;i++)
#define int64 long long
#define N 12
int64 d;
int64 num[N];
int64 remain[N];

int64 gcd(int64 a,int64 b)
{
	return b?  gcd(b,a%b):a;
}
int64 exgcd(int64 a,int64 b,int64 &x,int64 &y)
{
	if(b==0){x=1;y=0;return a;}
	d=exgcd(b,a%b,x,y);
	int64 temp=x;
	x=y;
	y=temp-a/b*y;
	return d;
}
int64 china(int64 m,int64 num[],int64 remain[],int64 &lcm )
{
	bool flag=true;
	int64 a,b,c,x,y,remain1,remain2;
	a=num[0];remain1=remain[0];
	FOR(i,1,m)
	{
		b=num[i];remain2=remain[i];c=remain2-remain1;
		d=exgcd(a,b,x,y);
		if(c%d)flag=false;

		x=((x*(c/d))%b+b)%b;
		remain1=remain1+a*x;
		a=(a*b)/d;
		remain1=(remain1%a+a)%a;
	}
	lcm=a;
	if(!flag)return -1;
	return remain1;
}

int main() {
	int cas;
	cin>>cas;
	while(cas--)
	{
		int64 n,m;
		int64 lcm;
		int64 ans,cnt=0;
		cin>>n>>m;
		FOR(i,0,m) cin>>num[i];
		FOR(i,0,m) cin>>remain[i];
		ans=china(m,num,remain,lcm);
		if(ans==-1||n<ans){cout<<0<<endl;continue;}

		cnt=(n-ans)/lcm+1;
		if(ans==0)cnt--;
		cout<<cnt<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值