题意:给出两个数 N,M,再给出M个除数NUM[],再给出对应的M个余数REMAIN[] 。
求在区间[1,N]内有多少个数满足所有情况。
除了应用扩展欧几里德和中国剩余定理,要注意的是可以将M个除数变成两个除数,然后更新除数和余数。
代码如下:
//============================================================================
// Name : hdu1573.cpp
// Author : ssslpk
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include <iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define FOR(i,s,m) for(int i=s;i<m;i++)
#define int64 long long
#define N 12
int64 d;
int64 num[N];
int64 remain[N];
int64 gcd(int64 a,int64 b)
{
return b? gcd(b,a%b):a;
}
int64 exgcd(int64 a,int64 b,int64 &x,int64 &y)
{
if(b==0){x=1;y=0;return a;}
d=exgcd(b,a%b,x,y);
int64 temp=x;
x=y;
y=temp-a/b*y;
return d;
}
int64 china(int64 m,int64 num[],int64 remain[],int64 &lcm )
{
bool flag=true;
int64 a,b,c,x,y,remain1,remain2;
a=num[0];remain1=remain[0];
FOR(i,1,m)
{
b=num[i];remain2=remain[i];c=remain2-remain1;
d=exgcd(a,b,x,y);
if(c%d)flag=false;
x=((x*(c/d))%b+b)%b;
remain1=remain1+a*x;
a=(a*b)/d;
remain1=(remain1%a+a)%a;
}
lcm=a;
if(!flag)return -1;
return remain1;
}
int main() {
int cas;
cin>>cas;
while(cas--)
{
int64 n,m;
int64 lcm;
int64 ans,cnt=0;
cin>>n>>m;
FOR(i,0,m) cin>>num[i];
FOR(i,0,m) cin>>remain[i];
ans=china(m,num,remain,lcm);
if(ans==-1||n<ans){cout<<0<<endl;continue;}
cnt=(n-ans)/lcm+1;
if(ans==0)cnt--;
cout<<cnt<<endl;
}
return 0;
}