参考大佬的博客写的很好https://blog.csdn.net/qq_43627087/article/details/107927412?biz_id=102&utm_term=Codeforces%20Round%20#663%20Div.%202&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-107927412&spm=1018.2118.3001.4187
题目
传送门
A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
Consider a permutation p of length n, we build a graph of size n using it as follows:
For every 1≤i≤n, find the largest j such that 1≤jpi, and add an undirected edge between node i and node j
For every 1≤i≤n, find the smallest j such that i<j≤n and pj>pi, and add an undirected edge between node i and node j
In cases where no such j exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.
For clarity, consider as an example n=4, and p=[3,1,4,2]; here, the edges of the graph are (1,3),(2,1),(2,3),(4,3).
A permutation p is cyclic if the graph built using p has at least one simple cycle.
Given n, find the number of cyclic permutations of length n. Since the number may be very large, output it modulo 109+7.
Please refer to the Notes section for the formal definition of a simple cycle
Input
The first and only line contains a single integer n (3≤n≤106).
Output
Output a single integer 0≤x<109+7, the number of cyclic permutations of length n modulo 109+7.
输入
4
输出
16
输入
583291
输出
135712853
题意:给出一个数n,将1~n,n个数进行全排列形成数组a,每次连接第i个位置和左边第一个大于a[i]的位置,第i个位置和右边第一个大于a[i]的位置,问有几个排列满足条件
思路:对于n=4,我们列出不能形成环的排列
1234
4321
1342
2431
1243
3421
1432
2341
发现只有两个固定格式…1…4…和…4…1…形成对称,所以我们可以先计算一个格式再乘以二即可,对于…1…n…,1~n之间的数字必须是升序,n之后的数字必须为降序并且1-n之间的数字个数取值【0,n-2】所以不符合条件的排列有2*[C(0,n-2)+C(1,n-2)+C(2,n-2)…C(n-2,n-2)]=2*2的n-2次方=2的n-1次方,这里贴出排列求和公式C(0,n)+C(1,n)+C(2,n)…C(n,n)=2的n次方所以满足条件的排列有n!-2的n-1次方
AC code
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
using namespace std;
#define ll long long
const int inf=1e9+7;
ll a[1100000],b[1100000];
void inin()//打表计算
{
b[0]=1;
ll i=1,s=1,ss=1;
for(;i<=1000000;i++)
{
s*=i;
ss*=2;
s%=1000000007;
ss%=1000000007;
a[i]=s;//全排列
b[i]=ss;//2的n次方
}
}
void solve()
{
int n;
cin>>n;
ll o=(a[n]-b[n-1]+inf)%inf;//注意加上一个inf
printf("%lld\n",o);
}
int main()
{
inin();
solve();
}