【多变量输入单步预测】基于北方苍鹰算法(NGO)优化CNN-BiLSTM-Attention的风电功率预测研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、研究方法

1. 模型组成

2. 研究步骤

三、研究成果与应用前景

四、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

关于【多变量输入单步预测】基于北方苍鹰算法(NGO)优化CNN-BiLSTM-Attention的风电功率预测研究,以下是一个综合的概述:

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构转型中扮演着越来越重要的角色。然而,由于风速的随机性和不稳定性,风电功率的预测一直是一个具有挑战性的问题。精准的风电功率预测可以有效提高风电场的运行效率、降低发电成本,并提高电力系统的稳定性。因此,开发精确的风电功率预测模型具有重要意义。

二、研究方法

1. 模型组成
  • CNN(卷积神经网络):用于提取风电功率数据的空间特征,如风速变化趋势、季节性变化等。通过滑动窗口和池化层,CNN能够捕捉数据中的局部特征,并减少数据维度。
  • BiLSTM(双向长短期记忆网络):虽然参考文章中提到的是BiGRU,但BiLSTM同样作为RNN的一种变体,能够更有效地捕捉数据中的时间序列特征,特别是长期依赖关系。在风电功率预测中,BiLSTM能够捕捉风速和功率随时间的变化规律,同时考虑过去和未来的信息。
  • Attention(注意力机制):允许模型在处理序列数据时,集中关注输入序列中最相关的部分。在风电功率预测中,注意力机制可以增强模型对关键时间步的敏感度,提高预测精度。
  • 北方苍鹰算法(NGO):一种模拟北方苍鹰捕猎行为的元启发式优化算法,具有全局搜索能力强、收敛速度快、易于实现等优点。在本研究中,NGO算法被用来优化CNN-BiLSTM-Attention模型的超参数,如卷积核大小、卷积层数量、BiLSTM隐藏层神经元个数、注意力机制参数等。
2. 研究步骤
  1. 数据预处理:对风电功率历史数据进行清洗、归一化等处理,以便于神经网络学习。
  2. 模型构建:结合CNN、BiLSTM和Attention机制构建风电功率预测模型。
  3. 超参数优化:利用北方苍鹰算法对CNN-BiLSTM-Attention模型的超参数进行优化。
  4. 模型训练:使用优化后的超参数对模型进行训练,通过反向传播更新网络权重,目标是最小化预测误差(如均方误差)。
  5. 结果评估:评估预测结果与实际数据的匹配程度,常用指标包括MAE(平均绝对误差)、RMSE(均方根误差)等。

三、研究成果与应用前景

通过对某风电场实测数据的实验验证,基于北方苍鹰算法优化的CNN-BiLSTM-Attention风电功率预测模型在预测精度和稳定性方面均优于传统方法和现有深度学习模型。这一研究成果为风电功率预测提供了一种新颖有效的方法,具有广阔的应用前景。

  • 高精度:CNN-BiLSTM-Attention模型能够同时捕捉风电功率数据中的空间和时间特征,以及关键时间步的信息,从而实现高精度的预测。
  • 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
  • 稳定性好:通过引入BiLSTM的双向结构和注意力机制,模型在处理时序数据时具有更好的稳定性。

四、未来展望

未来,可以进一步探索其他优化算法对模型进行优化,如遗传算法、粒子群优化算法等。同时,可以将该模型应用于其他能源预测领域,如太阳能发电、水力发电等。此外,还可以研究模型的鲁棒性,使其能够更好地应对数据波动和突发事件。

综上所述,基于北方苍鹰算法优化的CNN-BiLSTM-Attention风电功率预测研究通过结合深度学习的非线性学习能力和优化算法的全局搜索能力,有效提高了风电功率预测的准确性和稳定性,对于推动风电产业的发展具有重要意义。

📚2 运行结果

采用前10个样本的所有特征,去预测下一个样本的发电功率。

部分代码:


layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    bilstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(1,2)          %创建一个单头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值