51Nod 1070 Bash游戏 V4 (Fibonacci博弈 )
1、问题模型: 有一堆个数为n的石子,游戏双方轮流取石子,满足: (1)先手不能在第一次把所有的石子取完; (2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。 约定取走最后一个石子的人为赢家。2、解决思路: 当n为Fibonacci数时,先手必败。即存在先手的必败态当且仅当石头个数为Fibonacci数。 证明:根据“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。如n=
原创
2018-10-16 16:16:26 ·
279 阅读 ·
0 评论