迭代法
可以理解为“已知数列的递推公式求第n项”的问题,一般使用循环或者递归实现。最常见的例子比如递归求 n!。
递推公式为 A(n) = n * A(n-1)
def f(n):
if n==1:
return n
else :
return n * f(n-1)
迭代法分为三部分:
1.迭代的结构(递归函数的结构)
2.变化的量(当前的参数n以及下一次迭代时候的n-1)
3.迭代的终点(当n到1的时候直接返回不在递归下去)
其中终点可以为一个确定的条件也可以为收敛程度的条件。
其他技巧
哨兵位
常用在线性表的处理过程中。在表头的地方留一空位,在进行插入排序等操作时,需要移动数据,多一位可以用于临时记录数据。在插排中使用也可以省略边界判断,需要移动的数据都为更大的数时
l[0] = l[n]; //将要移动的数据记录进哨兵位
j = n;
while (l[j-1] > l[0]){ //这里因为没有等号,移动到头的时候正好相等推出
l[j] = l[j-1]; //移动数据
j--;
}
l[j] = l[0]; //最后补充上最后一次的移动数据
取余计算
- %也是除法运算,如果仅仅是判断奇偶数,判断(number & 1)是否等于 0 是更好的方法。
- 环形链表在遍历到尾部时候的 if(i==end) i=0 的特殊操作可以改成 i = ( i+1 ) % N则可以自动回到头部
- 对于二维矩阵的单循环遍历 ,N行M列, row = i / M , col = i % N,还原的话可以 i = row * N + col
快慢指针
判断链表是否有环,取链表中点(或其他比例),取倒数第k个
使用快慢指针,控制慢指针的步伐可以用慢指针定位到。
i的左子节点 2i+1
i的右子节点 2i+2
i的父亲节点 (i-1)/2