- 博客(4)
- 收藏
- 关注
原创 机器学习之旅(四):Logistic回归
机器学习之旅(四):Logistic回归Logistic回归工作原理 logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通
2018-01-21 14:54:26 326
原创 机器学习之旅(三):朴素贝叶斯
机器学习之旅(二):朴素贝叶斯朴素贝叶斯工作原理 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。分类是将一个未知样本分到几个预先已知类的过程。数据分类问题的解决是一个两步过程:第一步,建立一个模型,描述预先的数据集或概念集。通过分析由属性描述的样本(或实例,对象等)来构造模型。假定每一个样本都有一个预先定义的类,由一个被称为类标签的属性确定。为建立模型而被分析的数据元
2018-01-20 14:53:39 418
原创 机器学习之旅(二):决策树
机器学习之旅(二):决策树决策树工作原理 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entr
2018-01-18 11:53:01 399
原创 机器学习之旅(一):k-近邻算法(kNN)
机器学习之旅(一):k-近邻算法(kNN)k-近邻算法工作原理存在一个训练样本集,样本集中每个样本都有标签,已经事先知道每个样本的所属分类。输入新样本后(无标签),将新样本的每个特征与样本集中样本对应的特征进行比较,提取样本集中特征最相似(最近邻)的前K个分类标签,取出现次数最多的标签,作为新样本所属的分类。k-近邻算法采用测量不同特征值之间的距离方法进行分类优点:精度高、对
2018-01-17 21:22:25 151
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人