折纸问题
把一段纸条竖着放在桌子上,然后从纸条下方向上方对折1次,压出折痕后展开,此时折痕是凹下去的。若从纸条下方向上方对折2次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕、下折痕和上折痕。给定一个输入参数N,代表纸条都从下边向上方连续对折N次,请从上到下打印所有折痕的方向。
是一颗满二叉树结构,
实现先左再中,最后右的中序遍历,就是所有折痕的打印顺序(从下到上)。用递归实现。
案例
一颗二叉树原本是搜索二叉树,但其中有两个节点调换了位置,使得这棵二叉树不再是搜索二叉树,请找到这两个错误节点。
答:
1.对二叉树中序遍历,依此出现的节点值会一直升序,如果两个节点值错了,会出现降序。
2.若中序遍历时节点值出现了两次降序,第一个错误的节点为第一次降序时较大的节点,第二个错误的节点为第二次降序时较小的节点。
3.若中序遍历时节点值出现了一次降序,第一个错误的节点为这次降序时较大的节点,第二个错误的节点为这次降序时较小的节点。
案例
从二叉树的节点A出发,可以向上或向下走,但沿途的节点只能经过一次,当到达节点B时,路径上的节点数叫作A到B的距离。比如大家看到的图中,节点4和节点2的距离为2,节点5和节点6的距离为5。给定一颗二叉树的头节点head,求整颗树上节点间的最大距离。
分析:
一个以h为头的树上,最大距离只可能来自以下三种情况:
情况一:h的左子树上的最大距离。
情况二:h的右子树上的最大距离。
情况三:h左子树上离h左孩子最远的距离,加上h自身这个节点,再加上h右子树上离h右孩子的最远距离,也就是两个节点分别来自h两侧子树的情况。
三个值中最大的那个就是以h为头的整颗树上最远的距离。
步骤:
1、整个过程为后序遍历,在二叉树的每颗子树上执行步骤2.
2、假设子树头为h,处理h左子树,得到两个信息,左子树上的最大距离记为LMax1,左子树上距离h左孩子的最远距离记为LMax2。处理h右子树得到右子树上的最大距离记为RMax1,距离h右孩子的最远距离为RMax2。那么跨h节点情况下的最大距离为LMax2+1+RMax2,这个值与LMax1和RMax1比较,最大值为 以h为头的整棵树上的最大距离。
3、LMax2+1就是h左子树上离h最远的点到h的距离,RMax2+1就是h右子树上离h最远的点到h的距离,选两者中最大的一个作为h树上距离h最远的距离返回。
4、用返回长度为2的数组的方式,返回两个值
PS:理解是递归思想,但觉得不太对。这个不太懂,还需要细看。
解:
这题写了很久,但仔细想想,感觉没那么难,就是求子树深度的问题
#include<iostream>
#include<string>
#include<stack>
#include<queue>
using namespace std;
class BinaryTreeNode
{
public:
char data;
BinaryTreeNode *Left;
BinaryTreeNode *Right;
};
//创建二叉树,顺序依次为中间节点->左子树->右子树
void createBiTree(BinaryTreeNode* &T) //这里加上&意思是传递的参数为指针的引用,括号里面等价于 BiTreeNode* &T
{ //这样的意义在于在函数执行过后,传递进来的指针会发生改变(引用的作用),不可以去掉&
char c;
cin >> c;
if('#' == c) //当遇到#时,令树的根节点为NULL,从而结束该分支的递归
T = NULL;
else
{
T = new BinaryTreeNode;
T->data=c;
createBiTree(T->Left);
createBiTree(T->Right);
}
}
int treeDepth(BinaryTreeNode* root){
if(root==NULL){
return 0;
}
if(root->Left==NULL){
return treeDepth(root->Right)+1;
}
if(root->Right==NULL){
return treeDepth(root->Left)+1;
}
return treeDepth(root->Right)>treeDepth(root->Left)?treeDepth(root->Right)+1:treeDepth(root->Left)+1;
}
int max1(int a,int b,int c){
if(a>=b){
if(a>=c){
return a;
}
return c;
}
else if(b>=c)
return b;
else return c;
}
int maxjuli(BinaryTreeNode* root){
if(root==NULL)
return 0;
int Lmax1=maxjuli(root->Left);
int Lmax2=treeDepth(root->Left);
int Rmax1=maxjuli(root->Right);
int Rmax2=treeDepth(root->Right);
return max1(Lmax1,Rmax1,Lmax2+Rmax2);
}
int main(){
BinaryTreeNode* T; //声明一个指向二叉树根节点的指针
createBiTree(T); //abcd##e#f#g#h###i##
cout<<"二叉树创建完成!"<<endl;
cout<<"二叉树最长距离:"<<endl;
int a=maxjuli(T);
cout<<a<<endl;
return 0;
}
案例
给定一颗二叉树的头节点head,已知其中所有节点的值都不一样,找到含有节点最多的搜索二叉子树,并返回这颗子树的头节点。例如,大家现在看到的图1这颗树,最大的搜索子树就是图2这棵树。
以节点node为头的树中,最大的搜索二叉子树只可能来自以下两种情况:
1、来自node左子树上的最大搜索二叉子树是以node左孩子为头的,并且来自node右子树上的最大搜索二叉树是以node右孩子为头的,node左子树上的最大搜索二叉子树的最大值小于node的节点值,node右子树上的最大搜索二叉子树的最小值大于node的节点值,那么以节点node为头的整颗树都是搜索二叉树。
2、若不满足第一种情况,说明以node为头的树整体不能连成搜索二叉树。这种情况下,以node为头的树上的最大搜索二叉子树是来自node左子树上的最大搜索二叉子树和来自node右子树上的最大搜索二叉子树之间,节点数较多的那个。
求解具体过程为:
1.整体过程是二叉树的后序遍历。
2.遍历到当前节点记为cur,先遍历cur的左子树并收集4个信息,分别是左子树上最大搜索二叉树的头节点,节点数,最小值和最大值。再遍历cur的右子树并收集4个信息,分别是右子树上最大搜索二叉树的头节点,节点数,最小值和最大值
3.根据步骤2所收集的信息,判断是否满足第一种情况,也就是是否以cur为头的子树,整体都是搜索二叉树。如果满足第一种情况,就返回cur节点,如果满足第二种情况,就返回左子树和右子树各自的最大搜索二叉树中,节点数较多的那个树的头节点。
4.对于如何返回4个信息,可使用全局变量更新的方式实现,或返回长度为4的数组。
难点:递归过程、收集信息并返回上层。