Leetcode:面试题47. 礼物的最大价值(动态规划)

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

提示:

0 < grid.length <= 200
0 < grid[0].length <= 200

因为是在动态规划的tap下做的题,所以自然要用动态规划,可惜的是,我完全找不到最优子结构,总觉得存在问题,没办法,看了题解,实在太强了,分类讨论的最优子结构,实在想不打啊,太菜了

class Solution {
    public int maxValue(int[][] grid) {
        int m=grid.length,n=grid[0].length;
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(i==0&&j==0) continue;
                if(i==0) grid[i][j]+=grid[i][j-1];
                else if(j==0) grid[i][j]+=grid[i-1][j];
                else
                    grid[i][j]+=Math.max(grid[i-1][j],grid[i][j-1]);
            }
        }
    return grid[m-1][n-1];

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值