8、嵌入式系统安全:整体安全ISA扩展推荐

嵌入式系统安全:整体安全ISA扩展推荐

1. 引言

随着物联网(IoT)的广泛发展,嵌入式设备的需求持续增长。然而,嵌入式系统在安全相关设备中的广泛存在也增加了遭受攻击的可能性。攻击者通过物理访问,可对数字设备和安全关键系统实施多种攻击,如侧信道分析(SCA)、故障注入攻击(FIA)等。同时,软件层面的攻击也可能操纵程序的控制流。

此前,针对这些威胁的众多防御措施大多是孤立研究的。而在嵌入式系统中,攻击者可能采用多种攻击技术,因此需要综合运用防御手段。直接堆叠不同的防御方法可能导致效率低下,最好确定一组高效的指令,通过重用原语来实现最大程度的安全。

1.1 目标与贡献

  • 系统分析 :仔细分析针对指令毛刺攻击和内存损坏漏洞的硬件加速防御的最新技术,找出防御组合,在最大化安全保证的同时,最小化潜在的性能影响。
  • 新型硬件扩展 :基于系统分析,为RISC - V设计一种新型指令集扩展,抵御上述攻击并减少开销。该扩展利用抗毛刺防御确保基本块指令流的完整性,实现基于标签的控制流完整性(CFI)防御和指针保护方案。
  • 评估 :使用gem5模拟器和MiBench2基准套件评估推荐方案,并与现有保护嵌入式系统免受类似威胁的工作进行比较,结果显示该方案内存开销降低39%,但性能开销提高81%。

2. 技术背景

2.1 代码注入与重用攻击

尽管处理技术有了显著进步,但嵌入式系统在资源和功能上仍受到限制。C和C++是主要编程语言,

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值