这周趁着有Div3想上上分,过了3题,900多名。本以为这下上1400稳了吧,没想到最后一看Rating,1399.。。。看来想变成青名还得继续打喽(希望别再掉下去)。
言归正传,我们来看一下这次Div3的题解
题目链接:http://codeforces.com/contest/988
A题
这题确实比较水,由于输出任意一组就可以,那么就暴力了,使用used数组标记一下之前出现的元素就可以喽~
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,k;
int cnt=0;
int a[10000];
int used[10000];
int res[10000];
int u=0;
int flag=0;
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
{
if(!used[a[i]])
{
cnt++;
used[a[i]]=1;
res[u++]=i+1;
}
if(cnt==k)
{
flag=1;
break;
}
}
if(flag==0)
{
printf("NO\n");
}
else
{
printf("YES\n");
printf("%d",res[0]);
for(int i=1;i<u;i++)
printf(" %d",res[i]);
printf("\n");
}
return 0;
}
B题
应该是考字符串排序。若前一个能成为后一个的子串,那么前一个串的长度必定不大于后一个,根据这个首先排个序。
接下来就是字符串匹配了。可以暴力(因为串长度只有100),当然神犇也可以用KMP(觉得这道题写KMP稍微有些浪费时间)。
#include<bits/stdc++.h>
using namespace std;
string a[110];
bool cmp(string x,string y)
{
return x.size()<y.size();
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
cin >> a[i];
sort(a,a+n,cmp);
if(n==1)
{
printf("YES\n");
cout << a[0] <<endl;
}
else
{
int fff=1;
for(int i=0;i<n-1;i++)
{
int ff=0;
for(int j=0;j<=a[i+1].size()-a[i].size();j++)
{
int flag=1;
int u=0;
for(int k=j;k<j+a[i].size();k++)
{
if(a[i][u]!=a[i+1][k])
{
flag=0;
break;
}
else
u++;
}
if(flag==1)
{
ff=1;
break;
}
}
if(ff==0)
{
fff=0;
break;
}
}
if(fff==1)
{
cout << "YES" << endl;
for(int i=0;i<n;i++)
cout << a[i] << endl;
}
else
{
printf("NO\n");
}
}
return 0;
}
C题
这道题比赛的时候用了很长时间才做出来,归根结底还是map用的不熟。
思路就是在线处理,每次读入一列数就把这列数去掉一个元素后可能的情况存入map。我开了两个map,一个存第几组,一个存在每组数中的位置,也就是下标。(后来看了网上的代码可以用pair存,窝太弱了。。。)每次读入一组新的数时,就看之前有没有就行了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
map<ll,int> mp1;
map<ll,int> mp2;
ll a[200010];
int main()
{
int n,r1,r2,r3,r4,t;
int flag=0;
scanf("%d",&t);
for(ll i=1;i<=t;i++)
{
scanf("%d",&n);
ll sum=0;
for(ll j=1;j<=n;j++)
{
scanf("%lld",&a[j]);
sum+=a[j];
}
if(flag==1)
continue;
for(ll j=1;j<=n;j++)
{
map<ll,int>::iterator it=mp1.find(sum-a[j]);
if(it!=mp1.end())
{
if(mp1[sum-a[j]]!=i)
{
r1=mp1[sum-a[j]];
r2=mp2[sum-a[j]];
r3=i;
r4=j;
flag=1;
break;
}
}
else
{
mp1[sum-a[j]]=i;
mp2[sum-a[j]]=j;
}
}
}
if(flag==0)
printf("NO\n");
else
{
printf("YES\n");
printf("%d %d\n",r1,r2);
printf("%d %d\n",r3,r4);
}
return 0;
}
D题
可以说是一道数学题,也可以说是思维题
关键在于最多答案只有三个数且此时三个数成等差数列且公差为2的幂。(证明过程参考这位博主的博客)
https://blog.csdn.net/weixin_39453270/article/details/80548442
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[200010];
set<ll> s;
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%lld",&a[i]);
s.insert(a[i]);
}
ll num=1;
int u=0;
ll res[3];
ll pre[100];
while(num<=2e9)
{
pre[u++]=num;
num*=2;
}
int tot=0;
int t1,t2;
for(int i=0;i<n;i++)
{
if(tot==2)
break;
for(int j=0;j<u;j++)
{
int tem=0;
t1=s.count(a[i]+pre[j]);
t2=s.count(a[i]+2*pre[j]);
if(t1&&t2)
tem=2;
else
{
if(t1||t2)
{
tem=1;
}
else
tem=0;
}
if(tem>tot)
{
if(tem==1)
{
res[0]=a[i];
if(t1)
res[1]=a[i]+pre[j];
if(t2)
res[1]=a[i]+2*pre[j];
}
else
{
res[0]=a[i];
res[1]=a[i]+pre[j];
res[2]=a[i]+2*pre[j];
}
tot=tem;
}
}
}
if(tot==0)
{
printf("1\n%lld\n",a[0]);
}
else if(tot==1)
{
printf("2\n");
printf("%lld %lld\n",res[0],res[1]);
}
else
{
printf("3\n");
printf("%lld %lld %lld\n",res[0],res[1],res[2]);
}
return 0;
}
E题
最开始想用BFS做,后来感觉过不了。后来看了别人的博客,发现是贪心。
关键在于能被25整除,那么末尾必是“00”,“25”,“50”。“75”。(这个应该很好理解)
那么我们就检查末两位,如果不是就把前面的数换到后面就好了,最后再对前导0处理一下就ok。详见代码
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
string a;
string b;
int len;
int tot;
void make(char x,char y)
{
int t1=0,t2=0,f=0;
if(a[len-1]==y)
{
t2=0;
f++;
}
else
{
for(int j=len-2;j>=0;j--)
{
if(a[j]==y)
{
for(int k=j;k<=len-2;k++)
{
swap(a[k],a[k+1]);
t2++;
}
f++;
break;
}
}
}
if(a[len-2]==x)
{
t1=0;
f++;
}
else
{
for(int j=len-3;j>=0;j--)
{
if(a[j]==x)
{
for(int k=j;k<=len-3;k++)
{
swap(a[k],a[k+1]);
t1++;
}
f++;
break;
}
}
}
int ind;
int ff=0;
if(f==2)
{
if(a[0]!='0')
tot=min(tot,t1+t2);
else
{
for(int i=1;i<=len-3;i++)
{
if(a[i]!='0')
{
ind=i;
ff=1;
break;
}
}
if(ff==1)
{
tot=min(tot,t1+t2+ind);
}
}
}
}
int main()
{
cin >> a;
b=a;
len=a.size();
tot=1000000000;
if(len==1)
printf("-1\n");
else
{
make('0','0');
a=b;
make('2','5');
a=b;
make('5','0');
a=b;
make('7','5');
if(tot==1000000000)
printf("-1\n");
else
printf("%d\n",tot);
}
return 0;
}
F题
又是dp题
参考了别人的博客,这道题有两种做法
(可以看看https://www.cnblogs.com/HDUjackyan/p/9125241.html这位大佬博客上的讲解,这里就直接搬过来了)
第一种
dp[i][j]表示从0到i时,在点i有第j把伞(没有伞时j==0)时的最小疲惫值
转移时,分成三种情况(即对应着三种操作)
dp[i+1][j]=min(dp[i+1][j],dp[i][j]+w[j]) (第i+1个点下雨,同时没带伞时不成立,其他条件都成立) 该操作是从第i个点到第i+1个点啥也不做,即第i+1个点的状态和第i个点的状态相同
dp[i+1][0]=min(dp[i+1][0],dp[i][j]) (当下一个点没下雨时成立) 该操作是在第i个点放下伞
dp[i+1][id[i]]=min(dp[i+1][id[i]],dp[i][j]+w[id[i]]) (在第i个点有伞) 该操作是第i个点有伞,拿起伞走到第i+1个点上去
#include<bits/stdc++.h>
#define INF 10000000000
using namespace std;
typedef long long ll;
typedef struct
{
int ind;
int w;
} U;
U ubr[2010];
int rain[2010];
int ok[2010];
ll dp[2010][2010];
bool cmp(U x,U y)
{
if(x.ind!=y.ind)
return x.ind<y.ind;
else
return x.w<y.w;
}
int main()
{
int a,n,m,t1,t2;
scanf("%d%d%d",&a,&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&t1,&t2);
for(int j=t1+1;j<=t2;j++)
{
rain[j]=1;
}
}
ubr[0].ind=-1;
ubr[0].w=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&ubr[i].ind,&ubr[i].w);
}
sort(ubr,ubr+m+1,cmp);
for(int i=1;i<=m;i++)
{
if(ok[ubr[i].ind]==0)
ok[ubr[i].ind]=i;
}
for(int i=0;i<=a;i++)
{
for(int j=0;j<=m;j++)
{
dp[i][j]=INF;
}
}
dp[0][0]=0;
for(int i=0;i<a;i++)
{
for(int j=0;j<=m;j++)
{
if(j||!rain[i+1])
dp[i+1][j]=min(dp[i+1][j],dp[i][j]+ubr[j].w);
if(!rain[i+1])
dp[i+1][0]=min(dp[i+1][0],dp[i][j]);
if(ok[i])
dp[i+1][ok[i]]=min(dp[i+1][ok[i]],dp[i][j]+ubr[ok[i]].w);
}
}
ll ans=INF;
for(int j=0;j<=m;j++)
ans=min(ans,dp[a][j]);
if(ans==INF)
printf("-1\n");
else
printf("%lld\n",ans);
return 0;
}
第二种
这种我只是看了一下就口胡了,没有写。看完之后感觉甚至比第一种好理解?(想看代码的话直接看上面的博客就行)