- 博客(4)
- 收藏
- 关注
原创 机器学习实战——Logistic回归
机器学习实战——Logistic回归思想如下:对于N个特征属性(X1,X2,X3,X4……Xn),如果它们只属于两个类别(0,1),那么在N维空间上我们希望用一个N-1维的空间将这两个类划分开,划分后尽量使每边只包含一个类别。用两个特征属性来举例的话,对于样本中所有物体,(X1,X2)两个特征属性构成平面上的点,如果能找到一条直线把属于不同类别的点划分开来,那么对于未知类别的物体,只要判断属性...
2019-04-20 14:31:38 318
原创 机器学习实战——朴素贝叶斯
机器学习实战——朴素贝叶斯思想如下:有一个物体,具有属性1,2,那么它属于类别A的概率是多少呢?属于类别B的概率又是多少呢?如果属于A的概率大于输入B的概率,那么我们就认为这个物体很可能属于A。这就是朴素贝叶斯概率理论的思想。思想很简单,目标就是求出一个未知物体的所有属性值对应的各分类的概率。用一个简单的例子表示这个方法:假设有两个篮子A和B,其中一个篮子A有4000个红色的球和4000个...
2019-04-19 15:51:37 398
原创 《机器学习实战》-决策树算法心得
决策树的思路是这样的,假设有两个属性A,B,分别有两个值0,1,当A=0,B=0时这是个鸡,当A=0,B=1时是鸭,当A=1,B=0时是猫,当A=1,B=1时是狗。现在给了一个未知类别的物体,其属性是A=1,B=1,那么按照先判断A,后判断B的过程,得到如下决策流程:很简单的一种分类方法吧。实际上也是这样,最简单的决策树,就是从第一个属性的值开始进行分组,根据值的不同分成了不同子树,接着下一...
2019-04-15 13:49:12 812
原创 《机器学习实战》-KNN算法心得
@[TOC]《机器学习实战》-KNN算法心得)准备开始在CSDN上用博客记录学习心得,同时也分享一些其中自己产生的脑洞(想法)PS:第一次在CSDN上写,还不习惯这个编写方式在写之前说一下,因为书里很多代码在python3以后都会编译错误,所以关于《机器学习实战》的总结,不会具体分析代码,代码问题在overstackflow或者matplotlib官网都能搜索到。KNN是处理分类问题的,而...
2019-04-15 10:58:14 1670
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人