1174 . 区间中最大的数
时间限制:1 秒 空间限制:65536 KB 分值: 0
给出一个有N个数的序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,最大的数是多少。
例如: 1 7 6 3 1。i = 1, j = 3,对应的数为7 6 3,最大的数为7。(该问题也被称为RMQ问题)
Input
第1行:1个数N,表示序列的长度。(2 <= N <= 10000) 第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9) 第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 10000) 第N + 3 - N + Q + 2行:每行2个数,对应查询的起始编号i和结束编号j。(0 <= i <= j <= N - 1)
Output
共Q行,对应每一个查询区间的最大值。
Input 示例
5 1 7 6 3 1 3 0 1 1 3 3 4
Output 示例
7 7 3RMQ问题,直接的有O(n^2)的做法,可以压缩空间有O(nlogn)的做法,还有更好的线段树的做法,这里采用O(nlogn)的做法:
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <algorithm>
#define MAX 10005
/*
方法2:
ST算法
M[ i ][ j ] 是以i 开始,长度为 2^j 的子数组的最小值的索引
分两个区间,M[i][j]为这两个区间最值的索引
则M[i][j]={M[i][j-1],M[i+2^(j-1)+1][j-1]}
构造M时间复杂度O(nlogn)
如何求区间的最值RMQ[i][j]?
设k=log(j-i+1)
RMQ[i][j]={M[i][k],M[j-2^k+1][k]}
时间复杂度O(1)
*/
void RMQ2(int M[][15], int A[], int N)
{
int i, j;
//initialize M for the intervals with length 1
for (i = 0; i < N; i++)
M[i][0] = i;
//compute values from smaller to bigger intervals
for (j = 1; 1 << j <= N; j++)
for (i = 0; i + (1 << j) - 1 < N; i++)
if (A[M[i][j - 1]] > A[M[i + (1 << (j - 1))][j - 1]])
M[i][j] = M[i][j - 1];
else
M[i][j] = M[i + (1 << (j - 1))][j - 1];
}
int M[MAX][15];
int S[MAX];
int main(){
#ifndef WANGCHUAN
freopen("C:\\in.txt","r",stdin);
#endif
int n,q;
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d",&S[i]);
RMQ2(M,S,n);
scanf("%d",&q);
int i,j;
while(q--){
scanf("%d%d",&i,&j);
int k=log(j-i+1.0)/log(2.0)+(1e-8);
printf("%d\n",std::max(S[M[i][k]],S[M[j-(1<<k)+1][k]]));
}
return 0;
}