AI小知识系列
介绍一些深度学习内的小知识
Bai丁
我只是知识的搬运工
展开
-
AI小知识系列(三) Pandas常用操作
文章目录Pandas常用操作1.读取csv文件2.写csv文件3.DataFrame与Numpy格式的转换4.DataFrame数据的创建5.DataFrame数据的统计性描述6.DataFrame数据的查看7.DataFrame的切片操作8.相关的操作(排序、合并)Pandas常用操作import pandas as pdimport numpy as np#以下操作对100行,5列的数...原创 2020-03-08 13:47:23 · 287 阅读 · 0 评论 -
AI小知识系列(四) Matplotlib常用操作
文章目录Matplotlib常用操作1.折线图2.保存绘制的图像3.matplotlib输出中文问题4.绘图中的其他的操作5.子图--subplot讲解6.条形图绘制7.散点图的绘制8.直方图的绘制9.盒图10.饼状图Matplotlib常用操作import matplotlib.pyplot as pltimport numpy as np1.折线图x_axis = [5,8,9,1...原创 2020-03-08 15:55:05 · 750 阅读 · 0 评论 -
AI小知识系列(一)
文章目录AI小知识系列--第一节1、神经网络反向传播公式推导2、Batch Normalization的反向传播过程3、sigmoid的导数最大为0.254、Softmax?Hardmax?5、bagging vs boosting6、Batch-normalization与Layer-normalization7、Normalization为什么会奏效8、鲁棒性vs泛化能力9、numpy实现卷积...原创 2020-03-06 20:24:45 · 511 阅读 · 0 评论 -
AI小知识系列(二) 训练过程Trick合集
文章目录1. 写代码之前要做的事情2.设置端到端的训练评估框架1)固定随机种子2)简单化3)绘制测试集损失4)在初始阶段验证损失函数5)初始化6)人类基线7)设置一个独立于输入的基线8)过拟合一个batch9)验证减少训练损失10)在训练模型前进行数据可视化11)可视化预测动态12)使用反向传播来获得依赖关系3.挑选模型1)挑选模型2)Adam方法是安全的3)一次只复杂化一个4)学习率设置5)每轮...原创 2020-01-15 17:50:34 · 1308 阅读 · 0 评论 -
训练小技巧
文章目录1、参数初始化2、数据预处理方式3、梯度裁剪1、参数初始化几种方式,结果差不多。但是一定要做。否则可能会减慢收敛速度,影响收敛结果,甚至造成Nan等一系列问题。优秀的初始化应该使得各层的激活值和状态梯度的方差在传播过程中的方差保持一致。不然更新后的激活值方差发生改变,造成数据的不稳定。Xavier初始化 :条件:正向传播时,激活值的方差保持不变;反向传播时,关于状态值的梯度的方...原创 2020-01-15 17:43:19 · 223 阅读 · 0 评论 -
数据增强方法
文章目录数据增强方法1.基本的数据增强方法1)翻转Flip2)旋转Rotation3)平移Translations4)随即裁剪crop5)加噪声--高斯噪声等6)放射变换7)平滑模糊图像8)颜色空间变换9)随机擦除法(随机去掉一部分区域)2.高阶方法1)GAN自动生成2)条件GAN3)图片风格转移数据增强方法该博客中的图片和代码来自其他博客,本博客做总结用1.基本的数据增强方法1)翻转Fl...原创 2020-01-15 17:41:33 · 3339 阅读 · 0 评论 -
Pytorch保存和加载模型
文章目录一、保存加载模型基本用法二、保存加载自定义模型三、跨设备保存加载模型四、CUDA 的用法一、保存加载模型基本用法1、保存加载整个模型(不推荐)保存整个网络模型(网络结构+权重参数)。torch.save(model, 'net.pkl')直接加载整个网络模型(可能比较耗时)。model = torch.load('net.pkl')2、只保存加载模型参数(推荐)只保存模...原创 2019-11-01 14:10:31 · 1222 阅读 · 0 评论 -
Pytorch 小操作
文章目录1.指定GPU编号2、查看模型每层输出详情3、梯度裁剪(Gradient Clipping)4、学习率衰减5、在不同的层使用不同的学习率6、冻结某些层的参数该文章部分转载于 https://zhuanlan.zhihu.com/p/764592951.指定GPU编号第一种方法设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0:os.environ["CUDA_VIS...原创 2019-11-01 14:04:35 · 230 阅读 · 0 评论 -
预训练模型的应用(pytorch)
文章目录预训练模型使用的场景预训练模型的方法实现预训练模型的加载(pytorch)直接加载预训练模型修改某一层加载部分预训练模型预训练模型使用的场景声明:该部分有部分参考,若有侵权,请及时告知简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型。你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手。场景一:数据...原创 2019-06-04 11:44:29 · 9772 阅读 · 0 评论