近年来,AI技术的发展已经从基础任务处理逐渐向更复杂的推理场景迈进。Kimi近日发布的两项创新成果:数学推理模型 k0-math 和强化搜索版本 Kimi 探索版,为这一趋势带来全新可能。
k0-math:AI数学推理的新高峰
kimi k0-math
作为 Kimi 的首款强化推理模型,k0-math 融合了强化学习与思维链技术,能够模拟人脑的反思和规划过程,在数学问题求解上取得显著突破。k0-math 的性能在中考、高考、考研及竞赛级测试(如 MATH 和 AIME)中表现优异,甚至在多个基准测试上超越 OpenAI 的 o1-mini 和 o1-preview 模型。尤其是在 MATH 测试中,其得分达到 93.8,仅次于尚未公开的 o1 完全版。
不仅如此,k0-math 在复杂数学题目上的表现令人印象深刻。它能够通过探索和试错,不断调整解题策略,最终得出正确答案。然而,当前版本也存在一定局限性,例如对于几何类问题的适配不足,以及对极其简单问题的过度推理。这些问题将在后续迭代中逐步优化。
Kimi 探索版:从搜索到推理的智能跃升
Kimi 探索版专注于 AI 搜索的强化学习应用,通过意图增强、信源分析和链式思