Python与FPGA——膨胀腐蚀

本文介绍了腐蚀、膨胀和阈值三种图像处理算法在Python中的实现,以及如何使用FPGA实现腐蚀算法,强调了这些基础算法在图像处理中的重要性。作者还预告了后续将探讨帧差法在Python中的应用原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

  腐蚀是指周围的介质作用下产生损耗与破坏的过程,如生锈、腐烂等。而腐蚀算法也类似一种能够产生损坏,抹去部分像素的算法。


一、膨胀腐蚀

  膨胀腐蚀之前需要对图像进行二值化处理,然后进行以下处理。

  腐蚀: P = P 1 & P 2 & P 3 & P 4 & P 5 & P 6 & P 7 & P 8 & P 9 P = P1 \& P2 \& P3 \& P4 \& P5 \& P6 \& P7 \& P8 \& P9 P=P1&P2&P3&P4&P5&P6&P7&P8&P9
  膨胀: P = P 1 ∣ P 2 ∣ P 3 ∣ P 4 ∣ P 5 ∣ P 6 ∣ P 7 ∣ P 8 ∣ P 9 P = P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 P=P1∣P2∣P3∣P4∣P5∣P6∣P7∣P8∣P9
  图像二值化如下。

import numpy as np
import matplotlib.pyplot as plt
img = plt.imread("lenna.png")
gray = 0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2] 
gray = gray * 255#图像是[0-1]--->[0-255]
bin_image = np.where(gray >= 128, 1, 0)#处理成[0,1]像素

二、Python实现腐蚀算法

def 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值