HDU 1010( DFS+奇偶剪枝)

  1. 0 1 0 1 0 1
  2. 1 0 1 0 1 0
  3. 0 1 0 1 0 1
  4. 1 0 1 0 1 0
  5. 0 1 0 1 0 1
  6.  
  7. 从 0->1 需要奇数步
  8. 从 1->0 需要偶数步
  9. 那么设所在位置 (si,sj) 与 目标位置 (di,dj)
  10. 如果abs(si-sj)+abs(di-dj)为偶数,则说明 abs(si-sj) 和 abs(di-dj)的奇偶性相同,需要走偶数步
  11. 如果abs(si-sj)+abs(di-d
  12. 奇偶剪枝:把map看作
  13. j)为奇数,那么说明 abs(si-sj) 和 abs(di-dj)的奇偶性不同,需要走奇数步
  14. 理解为 abs(si-sj)+abs(di-dj) 的奇偶性就确定了所需要的步数的奇偶性!!
  15. 因此 temp=t-cnt-abs(sj-dj)-abs(si-di) 必然为偶数!
  16. 而 (t-cnt)表示剩下还需要走的步数,由于题目要求要在 t时 恰好到达,那么  (t-cnt) 与 abs(si-sj)+abs(di-dj) 的奇偶性必须相同

      题意为:http://acm.hdu.edu.cn/showproblem.php?pid=1010

     解题注意

      1:用 dfs 不断的搜索 看是否存在路径 刚好为长度为 t 有输出yes 没有输出 No

       2:主要考察点事 dnf 的剪枝

       3:注意最大优化的剪枝

      刚开始只有一个地方没优化就 LimitedTime 了

代码如下:

#include<iostream>
#include<math.h>
#include<queue>

#define Max 8
using namespace std;

char map[Max][Max];
int visit[Max][Max];

int n,m,t,ex,ey;
int temp;
int d[4][2]={{-1,0},{0,1},{1,0},{0,-1}};// 方向
bool flage = false;
bool f = false;
void dfs(int n,int m,int sx,int sy ,int k){
	f= false;
	int temp = t-k-abs(sx-ex)-abs(sy-ey);
	if( k>t && temp%2!=0 || temp<0 ){// 奇偶剪枝
		return;
	}
	if( sx ==ex && sy == ey){// 找到D
		if(k==t){
			flage = true;
			return;
		}
	}
	if(flage){
		return;
	}
	int i=0;
	for(i=0;i<4;i++){
		int nx,ny;
		nx=sx+d[i][0];ny=sy+d[i][1];
		
		if( nx<1 || nx>n || ny<1 || ny>m || map[nx][ny] =='X' || visit[nx][ny]==1){
			continue;
		}
		visit[nx][ny]=1;
		dfs(n,m,nx,ny ,k+1);
		visit[nx][ny]=0;
	}
}
void main(){
	int n,m,i=0,j=0,sx=0,sy=0,wall=0;
	while(cin>>n>>m>>t){
		wall = 0;
		if( n==0 && m==0 && t==0){
			break;
		}
		flage = false;
		for( i=1;i<=n;i++){
			for(j=1;j<=m;j++){
				cin>>map[i][j];
				if( map[i][j]=='D'){
					ex = i; ey = j;
				}
				if( map[i][j] =='S'){
					sx = i;sy=j;
				}
				if( map[i][j]=='X'){
					wall++;
				}
			}
		}
		memset(visit,0,sizeof(visit));
		visit[sx][sy]=1;
		if( n*m - wall < t){
			cout<<"NO"<<endl;
			continue;
		}

		if((t-abs(sx-ex)-abs(sy-ey))%2==0){
			dfs(n,m,sx,sy,0);
		}
		if( flage){
			cout<<"YES"<<endl;
		}else{
			cout<<"NO"<<endl;
		}
	}
}

做题一定要考虑细节啊……哎。我真失败,总是在细小的地方卡壳好久好久。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值