
AI
vcjmhg
这个作者很懒,什么都没留下…
展开
-
Numpy简单入门
概述Numpy是高性能科学计算好数据分析的基础包,提供了矩阵运算的功能,在深度学习和数据分析领域广泛应用。。使用创建array数组vector = np.asarray([1,2,3,4]);创建zero数组a = np.zeros(10) # 创建向量 a1 = np.zeros(shape=(5,3)) # 创建5行,3列的0矩阵创建one矩阵one = np.ones((3,4));创建自定义值的矩阵user_define = np.full((3, 5), 110) #原创 2022-01-02 16:09:42 · 920 阅读 · 0 评论 -
语义分割之deeplab v3+
概述deeplab v3+是deeplab系列中最新内容,也是当前最流行的语义分割算法,本篇文章主要记录的是个人在学习deeplab v3+过程中的一些收获以及个人对该算法的理解。首先我们先简单回顾下deeplap v3 相关的创新点以及不足。在上一讲的时候我们讲到v3相比v2创新点主要有四个方面,首先它提出了更加通用的框架,其次重新设计了空洞卷积,将空洞卷积和级联模块结合起来使用,而不再单独使用。第三点它改进了ASPP,在ASPP的最后一层使用了BN层。最后一点是去掉了CRF。并且我们在最后,也说了d原创 2020-07-29 19:09:15 · 928 阅读 · 0 评论 -
语义分割之deeplab v1
概述首先我们简单考虑一下什么是语义分割?语义分割是从粗推理到精推理的自然步骤。原点可以定位在分类,分类包括对整个输入进行预测。下一步是本地化/检测,它不仅提供类,还提供关于这些类的空间位置的附加信息。最后,语义分割通过对每个像素进行密集的预测、推断标签来实现细粒度的推理,从而使每个像素都被标记为其封闭对象区域的类别。其实简单来说,**语义分割就是像素级别的图像分类。**我们以下边一幅图为例:左侧是原图,右侧是经过图像分割之后的图片,结果图中我们可以看到,经过图片分割后,不同类别的物体,例如行人飞机、原创 2020-07-29 19:06:46 · 388 阅读 · 0 评论