大模型原理、微调和行业大模型的部署

周红伟老师

课程背景

本课程首先讲述了有关Transformer和大语言模型(LLM)的关键前置知识, 包括注意力机制、多头注意力、编码器-解码器结构等Transformer原理, 以及LLM的文本生成和LLM微调技术原理。

在此基础上, 重点介绍了ChatGLM4模型的进化历程、技术原理和代码实现。其中涉及RMSNorm归一化、SwiGLU激活函数、RoPE位置编码、GQA注意力和KVCache等关键技术。通过代码解析, 深入剖析了ChatGLM4的架构设计和代码实现。

在实践部分, 课程还介绍了如何在阿里云使用Ollama和vLLM部署ChatGLM4模型, 以及使用llama_factory工具进行基于LoRA和QLoRA的ChatGLM4 8B大模型微调。项目实战环节则提供了从准备数据集到训练、推理、评估的全流程指导, 聚焦中文增强和医疗问答两大应用方向。

这是一门内容全面、理论实践并重的大模型课程。不仅系统讲解了LLM和ChatGLM4的技术原理, 还通过代码解析和实战项目深度剖析了相关技术在工程落地中的关键环节, 有助于学员全面掌握大模型相关知识和动手实战能力。

培训对象

希望学习ChatGLM4大模型原理、代码和部署、微调、评估的学员

课程收益

学习CHATGLM4模型的架构和原理、模型代码实现以及部署、微调、评估实战

培训时长

12小时

课程大纲

第一章 Transformer原理与代码讲解

- 注意力机制:了解注意力机制如何使模型能够捕捉输入序列中不同位置之间的相关性。

- 自注意力:解释自注意力如何允许序列的每个元素都与序列中的其他元素进行交互。

- 多头注意力:探讨多头注意力如何通过并行处理多个注意力层来增强模型的能力。

- 位置编码:学习位置编码如何为模型提供序列中单词的位置信息。

- 编码器和解码器:深入分析Transformer的编码器和解码器结构,以及它们在模型中的作用。

- 层归一化(LayerNorm)和前馈网络(FFN):介绍这两种技术如何帮助稳定和增强模型的训练过程。

- 代码精讲:讲解Transformer模型的PyTorch代码实现细节等。

第二章 大模型(LLM)文本生成原理

- LLM的推理方式

- LLM的文本生成模式: 主要有Completion模式和Chat模式两种

- LLM的文本生成策略: 包括贪婪搜索、束搜索、随机采样、温度采样、Top-k采样和Top-p采样等

- LLM中的Token与分词器

- ChatGLM4的文本生成过程

- LLM文本生成的预填充和解码阶段

- LLM文本生成中的Q、K、V机制

第三章 大模型微调原理

- LLM的开发流程可分为预训练、有监督微调、奖励建模和强化学习四个阶段

- 从基座模型到对话模型的转变。

- 针对特定领域的SFT微调

- 微调的技术方法包括全参微调、冻结微调、LoRA、QLoRA

- LoRA技术原理和有效性

- QLoRA技术原理

 ChatGLM4进化史和生态

 -ChatGLM4原理精讲

 - ChatGLM4模型架构

- RMSNorm归一化技术

- SwiGLU激活函数

- RoPE旋转位置编码

- GQA分组查询注意力

- KVCache

 ChatGLM4代码解析

- 各文件功能

- completion和chat应用脚本代码解析

- generation.py代码解析

- model.py代码解析

- tokenizer.py代码解析

- RMSNorm代码解析

- SwiGLU代码解析

- GQA代码解析

- RoPE代码解析

- KVCache代码解析

第四章 ChatGLM4部署

 ChatGLM4部署

- Ollama部署ChatGLM4-云部署GPU算力领取及实例创建、ollama安装、ChatGLM4推理

- VLLM部署ChatGLM4

第五章 金融、法律、医疗行业大模型微调

 ChatGLM4项目实战1-llama_factory微调ChatGLM4中文增强大模型

- llama_factory介绍

- llama_factory安装及ChatGLM4模型下载

- LoRA微调训练ChatGLM4 8B Instruct模型

- ChatGLM4中文增强大模型推理

- ChatGLM4中文增强大模型评估(MMLU, CEVAL, CMMLU)

- LoRA文件合并

 ChatGLM4项目实战2-llama_factory微调ChatGLM4医疗问答大模型(LoRA)

- 准备医疗问答大模型数据集

- LoRA微调训练ChatGLM4 8B Instruct模型

- ChatGLM4医疗问答大模型推理

 ChatGLM4项目实战3-llama_factory微调ChatGLM4医疗问答大模型(QLoRA)

- QLoRA微调训练ChatGLM4 8B Instruct模型

- ChatGLM4医疗问答大模型推理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI周红伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值