链接:点击打开链接
题意:有n只猴子,每只都有一个力量,开始时互相都不认识,它们之间发生m次争斗,每次发生a,b发生争斗时,a,b会从它们认识的猴子中选出一个最强的,并变为这两只猴子发生争斗,打完之后这两个猴子就互相认识,并且力量减半,如果a,b互相认识就输出-1,否则输出认识的猴子中最大的力量值
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int SIZE=100005;
struct node{
int l,r,dis,val;
};
node ltree[SIZE];
int par[SIZE];
int find(int x){
if(x==par[x])
return x;
return par[x]=find(par[x]);
}
int merge(int x,int y){
int l,r;
if(x==0)
return y;
if(y==0) //插入的树为空时直接返回x,也就是合并完的树
return x;
if(ltree[x].val<ltree[y].val)
swap(x,y);
ltree[x].r=merge(ltree[x].r,y);
l=ltree[x].l,r=ltree[x].r;
par[r]=x; //并查集合并
if(ltree[l].dis<ltree[r].dis) //必须遵守左偏树的性质,左节点的距离不小于右节点的距离
swap(ltree[x].l,ltree[x].r);
ltree[x].dis=ltree[ltree[x].r].dis+1;
return x;
}
int pop(int x){
int l,r;
l=ltree[x].l;
r=ltree[x].r;
par[l]=l,par[r]=r;
ltree[x].l=ltree[x].r=ltree[x].dis=0;
return merge(l,r);
}
int main(){ //左偏树就是在log(n)的复杂度情况下,实现优先队列的插入,删除
int n,m,i,j,a,b,l,r,fa,fb; //最重要的是实现两颗树的合并,还是应该看看集训队的论文,那个
while(scanf("%d",&n)!=EOF){ //讲的非常详细http://www.doc88.com/p-9582113848978.html
for(i=1;i<=n;i++){
scanf("%d",<ree[i].val);
ltree[i].l=ltree[i].r=ltree[i].dis=0;
par[i]=i;
}
scanf("%d",&m);
while(m--){
scanf("%d%d",&a,&b);
fa=find(a),fb=find(b);
if(fa==fb)
puts("-1");
else{
ltree[fa].val/=2; //将最大的值减半
ltree[fb].val/=2;
l=pop(fa),r=pop(fb); //弹出最大的两个值,再与新的值合并
l=merge(l,fa);
r=merge(r,fb);
l=merge(l,r);
printf("%d\n",ltree[l].val);
}
}
}
return 0;
}