注意,内存限制32MB,存不下边
题意:
一个游戏内有 n n n个世界,每个世界有 m m m个节点和若干的有向边,玩家一开始在第一个世界的第一个节点,当我们在 i i i世界的 j j j点时,我们可以选择这个世界 j j j点的出发的一条边,到另外一个节点,但是在每个世界机会仅有一次,也可以不选择这样的边,在原地。假设我们在 i i i世界内最后到达的时 j j j点,那么我们会被传送至 i + 1 i+1 i+1世界的 j j j点(这样的传送仅会发生在 i < n i<n i<n),如果我们最后在 n n n世界并且停留在 m m m点,那我们就赢了。现在我们在这 n n n个世界内选择若干个连续的世界组成一个新的游戏,唯一的限制是要保证新游戏至少有一种赢的方法,要求找到符合条件的世界的最少数量。
方法:
我们设 d p [ i ] [ j ] dp[i][j] dp[i][j]为能到达 i i i世界的 j j j点的最后的出发世界,显然,转移只发生在相邻两个世界,因此我们可以滚动优化,用 l a s t last last保存上个世界, d p dp dp计算当前世界,问题再与怎么转移?如果我们知道当前世界有一条 u → v u\rightarrow v u→v的边,那么 v v v肯定是与 u u u有关系的,但能转移的是当前世界的 u u u还是上个世界的 u u u呢?假设在世界 i i i有这样的例子 1 → 2 → 3 1\rightarrow 2 \rightarrow 3 1→2→3,一开始知道边 1 → 2 1\rightarrow 2 1→2,显然 d p [ 1 ] = i dp[1]=i dp[1]=i,那么 d p [ 2 ] = i dp[2]=i dp[2]=i,再知道边 2 → 3 2\rightarrow 3 2→3,于是 d p [ 3 ] = i dp[3]=i dp[3]=i,这显然是不对的,因为每个世界仅有一次机会改变所在位置。因此我们选择从上个世界转移(这也是为什么不用一个数组来优化而用两个),那么知道边 u → v u\rightarrow v u→v,就可以给 v v v一个找更近的世界的机会,于是 d p [ v ] = m a x ( d p [ v ] , l a s t [ u ] ) dp[v]=max(dp[v],last[u]) dp[v]=max(dp[v],last[u]),并且如果这个边是有关 m m m的,还改变了 d p [ m ] dp[m] dp[m]的值,我们就可以重新计算一遍 a n s ans ans,也就是当 d p [ m ] ! = l a s t [ m ] , a n s = m i n ( a n s , i − d p [ m ] + 1 ) dp[m]!=last[m],ans=min(ans,i-dp[m]+1) dp[m]!=last[m],ans=min(ans,i−dp[m]+1)。并且我们还需要考虑可以从现在这个世界出发的情况,所以我们特殊设 l a s t [ 1 ] = i last[1]=i last[1]=i。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int read()
{
int ret=0,base=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-') base=-1;
ch=getchar();
}
while(isdigit(ch))
{
ret=(ret<<3)+(ret<<1)+ch-48;
ch=getchar();
}
return ret*base;
}
const int inf=0x3fffffff;
int n,m,ans=inf,dp[2005],last[2005];
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
{
last[1]=i;
int t=read();
while(t--)
{
int u=read(),v=read();
dp[v]=max(dp[v],last[u]);
if(v==m){
if(dp[m]>last[m]) ans=min(ans,i-dp[m]+1);
}
}
for(int j=1;j<=m;j++) last[j]=dp[j];
}
if(ans==inf) cout<<-1;
else cout<<ans;
return 0;
}