求整数中比特为1的二进制位数

 

好几次在CSDN上看到别人讨论如何求出一个整数的二进制表示中状态为1的比特位数。今天写了个程序把从网上看来的加上自己想出来的共有5种方法测试了一下,觉得好玩,就写了这篇博客。

首先简单介绍一下这五种方法。

第一种:最简单的,通过移位操作逐位测试并计数,不妨称为“逐位测试法”;

第二种:注意到对于“单比特二进制”而言,其状态与数值“相同”。即对于单个比特的“数”而言,为0即表示数值0,“全部为1”即表示数值1(注意多比特数值显然没有这个特点,比如一个字节有8个比特,当8个比特全为1时并不代表整数8,而代表255)。利用这一特点,从单个比特开始,以相邻的一位、两位、四位、八位和十六位为分组,一组一组地相加并逐步累计,最终得出结果;不妨称为“分组统计法”;

第三种:注意到一个整数减1的会把最后一位1变成0,而其后的0全变成1,利用这一特点,把一个数不断与它减1后的结果做“按位与”,直到它变成0,那么循环的次数便是其状态为1的比特位数。不妨称之为“循环减一相与法”;

第四种:考虚到多数处理器都提供“找到第一个为1的比特位”这种指令,在我的PC上直接调用X86处理器的BSFBSR指令,每次直接找到第一个不为0的位并消掉,直到该数变成0,那么循环的次数即为状态为1的比特位数。这种不妨称为“汇编嵌入法”;

第五种,一个字节一共有256种状态,将每一个取值所对应的0比特位数的事先写在程序中(注意这些数值是有规律的),也耗不了太多内存,然后程序运行的时候,把整数的四个字节拆开逐字节查表并相加,这种可称为“查表法”。

 

以下是程序。程序中对应以上五种方法的函数分别命名为f1f5。另外还有三个函数,correctness_test通过几个简单而又特殊的取值测试各个函数的正确性,相当于一个小单元测试;performance_test则分别将这5个函数作用于一亿个随机整数同进行性能测试;prepare_test_data则是准备1亿个随机整数的程序(这个函数实际并没有为测试数据提供足够的随机性,但这一点对性能测试的结果应该没有太大影响)

在我的机器上(AMD Phenom 8560处理器,Windows XP SP2),使用Visual C++ 2008 Express Edition编译并运行(Release版),某一次得到的输出如下:

All methods passed correctness test.

f1 consumed 14.156 seconds.

f2 consumed 1.032 seconds.

f3 consumed 4.656 seconds.

f4 consumed 13.687 seconds.

f5 consumed 1.422 seconds.

从结果来看,最慢的是第一种“逐位测试法”,最快的是第二种“分组统计法”。两者相差近14倍!

第三种“循环减一相与法”表现也很不错,虽然跟最快的相比逊色很多,但比最慢的强多了;

第四种“汇编嵌入法”,表面上看,其复杂度是跟数值中1的位数相关,这一点与方法三一样。而不像方法一那样复杂度跟整个数的位数有关。但其表现并不令人满意,结果几乎跟方法一一样差,而无法跟方法三相比。查了一下指令手册,发现BSR指令并不是一条固定周期的指令,作用于32位整数时,快的时候它只需几个CPU时钟周期,慢的时候需要40几个时钟周期,我想它极有可能是在CPU内部通过类似于“逐位查找”的微命令实现的。

第五种“查表法”的表现倒让人相当满意,性能逼近方法二。注意我只用了基于字节编码的表,如果实际使用中需要这种运算,我们完全可以构造一个基于unsigned short编码的表,这样一个表将占用64K内存,在现代PC上仍属小菜一碟,而每个32位数只需要把前后两半查表的结果一加即可。那样一来,其性能会不会比方法二还要强呢?有兴趣的朋友可以试试。:P

最后,或许有朋友会问:第四种方法中既然采用嵌入汇编,为何不把整个函数都用汇编来写呢?那样或许效率还会好一些。但那对其它几种方法来说是不公平的,因为所有的方法都可以改用汇编来写。所以,在这个函数中我只是把依赖于特定处理器(X86)、且无法使用C++语言及其标准库直接实现的部分用汇编实现,其它的计算仍然用C++语言写出。剩下的事情,跟其它几种方法的实现一样——让编译器看着办吧,它爱怎么优化就怎么优化。

没有更多推荐了,返回首页