- 博客(24)
- 资源 (2)
- 收藏
- 关注
原创 04 Transformers 之 模型
自定义模型建立在的配置和建模类上,支持AutoClassAPI;通过[]加载。不同之处在于建模代码不是来自。加载自定义模型时要格外小心。避免无意中执行恶意代码。通过 [] 加载自定义模型并设置作为额外的安全层,从特定的修订中加载自定义模型,以避免加载可能已更改的模型代码。
2025-12-21 09:27:46
380
原创 03 Transformers 之 安装
使用方式通过上述的方式,也可以通过代码来手工动态变更链接站点来正常下载数据集或模型。它抽取了大量通常需要手动编写训练循环的样板,使用这些样板可以更快地进入训练并专注于训练方式的设计。账号,我们可能就无法通过该站点下载预训练模型,训练的结果无法上传到该站点,只能通过其他的方式去下载所需的预训练模型,然后通过本地加载方式使用!加载预处理模型和预处理器,因为它会通过用“名称”或“预训练权重及配置文件的目录”来指定的任务和机器学习框架自动推断出合适的架构。类是通过使用预训练模型进行推理的最便捷有效的方式。
2025-12-21 09:25:56
241
原创 02 Transformers 之 了解 Transformers
Transformers开源库已成为机器学习领域的重要工具。该库基于PyTorch、TensorFlow和JAX框架,提供Transformer模型的核心实现(如Self-Attention、Encoder/Decoder)和丰富的预训练模型(BERT、GPT等)。主要特点包括:简化模型推理的Pipeline接口、支持分布式训练的Trainer工具、高效文本生成功能。Transformers库覆盖自然语言处理、计算机视觉、音频和多模态任务等。
2025-12-21 09:23:20
749
原创 01 Transformers 之 Transformer架构介绍
摘要:Transformer模型由谷歌团队于2017年提出,采用编码器-解码器架构,通过自注意力机制处理序列数据。编码器由多头自注意力层和前馈神经网络组成,解码器额外引入掩码机制确保自回归特性。模型通过位置编码保留序列顺序信息,并采用残差连接和层归一化优化训练。相比传统RNN,Transformer支持并行计算,在NLP、语音识别等领域表现优异,成为当前深度学习的重要基础架构。核心创新包括自注意力机制和位置编码方法,使其能有效捕捉长距离依赖关系。
2025-12-21 09:19:49
704
原创 16. Torch库
PyTorch核心模块torch提供了深度学习所需的核心功能,主要包括:1)张量(Tensor)操作,支持CPU/GPU计算和自动微分;2)丰富的数学运算,包括基本运算、矩阵运算和统计函数;3)数据类型转换,支持多种数值类型的创建和转换;4)随机数生成,可生成符合不同概率分布的随机张量;5)线性代数运算,如矩阵分解等高级操作;6)自动微分功能,通过autograd模块实现梯度计算;7)数据存储与序列化功能;8)多GPU并行计算支持。
2025-12-20 11:31:40
638
原创 11 - 使用FastAPI开发Web应用
FastAPI基于Starlette和Pydantic,支持异步编程,自动生成API文档,开发效率高。安装需Python3.8+,通过uvicorn启动服务。示例演示了创建简单API的流程,访问根路径返回JSON响应。建议Python专注后端开发,通过RESTful API提供AI服务,前端使用Vue/React等框架。
2025-12-18 08:59:11
909
原创 10 - 使用Flask开发Web应用
Python三大主流Web框架对比:Django作为全栈框架适合复杂应用开发,Flask以轻量灵活著称适合小型项目,FastAPI凭借高性能和异步支持成为API开发首选。文章详细比较了三者的特点、性能和适用场景,并以Flask为例演示了从安装到创建第一个Web应用的完整流程,最后在本地5000端口成功运行了Hello World示例。建议将Python用于后端开发,通过RESTful API与前端框架配合使用。
2025-12-17 08:42:49
1003
原创 09 - 使用Django开发Web应用
Python三大主流Web框架对比:Django作为全栈框架适合复杂应用开发,提供ORM等开箱即用功能;Flask作为轻量级微框架适合小型项目,性能优于Django;FastAPI以高性能和异步支持见长,是API服务的理想选择。Django采用MTV架构模式,包含模型层(ORM数据存取)、视图层(业务逻辑)和模板层(表现逻辑),通过URLconf实现路由映射。安装方式支持pip和源码安装,适合快速开发数据库驱动的网站。
2025-12-17 08:39:54
925
原创 06 - 使用PyCharm开发Python
以前的文章中介绍了如何安装了Python,到此,如果你对Python特别熟悉,可以不依赖于开发额外的开发IDE,直接使用包/环境管理工具和文本编辑器就可以开发Python工程项目。但是开发IDE在开发过程会提供更多便捷方式如管理工具集成、代码高亮、代码提示等,方便开发人员开发、管理、编译、发布项目。因此,一般的,我们会使用第三方开发环境来完成代码开发工作。目前,行业内使用的开发IDE层出不穷,在AI当道的今天,又推出了很多的AI工具如cursortrae等,现在,用的最多的开发IDE包括PyCharm和。
2025-12-15 08:35:48
259
原创 05 - 使用Vscode开发Python
以前的文章中介绍了如何安装了Python,到此,如果你对Python特别熟悉,可以不依赖于开发额外的开发IDE,直接使用包/环境管理工具和文本编辑器就可以开发Python工程项目。但是开发IDE在开发过程会提供更多便捷方式如管理工具集成、代码高亮、代码提示等,方便开发人员开发、管理、编译、发布项目。因此,一般的,我们会使用第三方开发环境来完成代码开发工作。目前,行业内使用的开发IDE层出不穷,在AI当道的今天,又推出了很多的AI工具如cursortrae等,现在,用的最多的开发IDE包括PyCharm和。
2025-12-15 08:34:59
775
原创 03 - 包管理工具pip、poetry、virtualenv、conda
对使用Python的朋友来说,包管理工具是基础,本文对pip、poetry、virtualenv、conda做了详细的介绍,希望对您有帮助
2025-12-14 08:26:34
776
原创 01 - 我的第一个应用
Python是一种解释型、跨平台的编程语言,它支持面向过程和面向对象编程,具有简洁的语法和动态类型特性,广泛应用于脚本编写、快速开发以及科学计算领域。
2025-12-13 08:24:39
794
翻译 OAuth2.1 认证框架
本文档译自《OAuth 2.1 Authorization Framework》第14小版本,目的是在深入新版Spring OAuth2 Security前对OAuth2.1知识的理解和掌握。
2025-12-12 10:58:20
16
原创 作为java的一个库来使用wvtool
该WVTool可作为一个独立的Java库或RapidMiner环境的一个插件来使用。在这里,我们将主要讨论WVTool作为一个java库来使用是如何实现的。1.1 安装 作为Java库使用WVTool,首先从SourceForge上WVTool/ homepage1上下载wvtool包 ,解压缩档案,并把wvtool.jar文件和所有的jar文件放置到lib子目录中。要使WVTo
2009-02-04 00:27:00
3724
1
原创 wvtool初探
今天为了解决自动分类的问题,从网上下载了wvtool组件来学习。一通学习下来颇有心得,下面来记录我的体会。 1、准备工作 下载wvtool, 官方网站:http://nemoz.org/joomla/content/blogcategory/26/86/lang,de/ 下载地址:http://sourceforge.net/project/showfiles
2009-01-17 23:43:00
4646
DsoFramer
2008-04-09
sqlite3安装文件及开发手册
2011-05-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅