VGGish代码解读

本文介绍了VGGish模型,它是一个在AudioSet数据集上预训练的模型,用于音频事件检测。VGGish将音频波形转化为128维的embedding特征,便于后续处理。文章简要概述了AudioSet数据库的重要性和规模,并对比了与其他大型数据集如ImageNet、YouTube-8M的关系。同时,详细描述了VGGish的框架,包括模型定义、参数、音频特征提取和转换过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看音频信号处理的相关工作,看到VGGish方法,网上的资料不是很多,做个总结。参考了以下文章

https://zhuanlan.zhihu.com/p/111996722

https://www.zhihu.com/question/56816282/answer/150639596

1 VGGish项目简介

AudioSet 由Google的声音理解团队于2017年3月发布,旨在为音频事件检测提供常见的大规模评估任务,并为全面的声音事件词汇提供起点。 AudioSet是一个由200万个人标记的10秒YouTube视频音轨组成的数据集,其标签来自600多个音频事件类的本体。

Vggish模型是在YouTube的AudioSet数据预训练得到模型。 Vggish项目地址:

https://github.com/tensorflow/models/tree/master/research/audioset/vggish

Google发刚刚布的AudioSet数据库在音频处理领域具有重大意义,可以说,AudioSet数据库是音频领域的ImageNet。可以预见,未来几年音频领域将有大量研究和突破。

        与音频处理十分相似的是语音识别,IBM和微软

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值